咨询与建议

限定检索结果

文献类型

  • 146 篇 会议
  • 68 篇 期刊文献

馆藏范围

  • 214 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 151 篇 工学
    • 111 篇 计算机科学与技术...
    • 98 篇 软件工程
    • 44 篇 信息与通信工程
    • 13 篇 控制科学与工程
    • 12 篇 电气工程
    • 11 篇 电子科学与技术(可...
    • 8 篇 机械工程
    • 6 篇 生物工程
    • 5 篇 化学工程与技术
    • 5 篇 生物医学工程(可授...
    • 4 篇 光学工程
    • 2 篇 动力工程及工程热...
  • 101 篇 理学
    • 75 篇 物理学
    • 38 篇 数学
    • 19 篇 统计学(可授理学、...
    • 12 篇 系统科学
    • 7 篇 生物学
    • 5 篇 化学
    • 1 篇 地球物理学
  • 17 篇 管理学
    • 11 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
    • 3 篇 工商管理
    • 2 篇 公共管理
  • 4 篇 医学
    • 4 篇 临床医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 公共卫生与预防医...
  • 3 篇 法学
    • 2 篇 社会学
    • 1 篇 法学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 教育学
    • 1 篇 体育学
  • 1 篇 农学

主题

  • 51 篇 speech recogniti...
  • 15 篇 hidden markov mo...
  • 15 篇 training
  • 13 篇 neural machine t...
  • 12 篇 machine translat...
  • 12 篇 transducers
  • 11 篇 computer aided l...
  • 11 篇 decoding
  • 9 篇 recurrent neural...
  • 8 篇 speech
  • 8 篇 feature extracti...
  • 8 篇 neural network
  • 8 篇 error analysis
  • 7 篇 modelling langua...
  • 6 篇 vocabulary
  • 6 篇 optimization
  • 6 篇 handwriting reco...
  • 6 篇 humans
  • 6 篇 automatic speech...
  • 5 篇 hierarchical sys...

机构

  • 40 篇 human language t...
  • 37 篇 apptek gmbh aach...
  • 32 篇 human language t...
  • 20 篇 human language t...
  • 10 篇 human language t...
  • 9 篇 human language t...
  • 8 篇 computer science...
  • 8 篇 human language t...
  • 7 篇 spoken language ...
  • 7 篇 apptek gmbh aach...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 5 篇 human language t...
  • 4 篇 human language t...
  • 3 篇 human language t...
  • 3 篇 rwth aachen univ...
  • 3 篇 limsi cnrs spoke...
  • 3 篇 human language t...
  • 2 篇 computer vision ...

作者

  • 141 篇 ney hermann
  • 55 篇 schlüter ralf
  • 36 篇 hermann ney
  • 16 篇 zeyer albert
  • 16 篇 zhou wei
  • 14 篇 gao yingbo
  • 14 篇 ralf schluter
  • 12 篇 ralf schlüter
  • 12 篇 mansour saab
  • 12 篇 zeineldeen moham...
  • 12 篇 michel wilfried
  • 12 篇 zens richard
  • 11 篇 herold christian
  • 10 篇 bahar parnia
  • 10 篇 peitz stephan
  • 9 篇 peter jan-thorst...
  • 9 篇 schluter ralf
  • 9 篇 freitag markus
  • 9 篇 wang weiyue
  • 8 篇 wuebker joern

语言

  • 214 篇 英文
检索条件"机构=Human Language Technology and Pattern Recognition Group Computer Science"
214 条 记 录,以下是141-150 订阅
排序:
Articulatory motivated acoustic features for speech recognition
Articulatory motivated acoustic features for speech recognit...
收藏 引用
9th European Conference on Speech Communication and technology
作者: Kocharov, Daniil Zolnay, András Schlüter, Ralf Ney, Hermann Department of Phonetics Faculty of Philology Saint-Petersburg State University 199034 Saint Petersburg Russia Human Language Technology and Pattern Recognition Lehrstuhl für Informatik VI Computer Science Department RWTH Aachen University 52056 Aachen Germany
In this paper, we consider the use of multiple acoustic features of the speech signal for continuous speech recognition. A novel articulatory motivated acoustic feature is introduced, namely the spectrum derivative fe... 详细信息
来源: 评论
Prediction of LSTM-RNN Full Context States as a Subtask for N-Gram Feedforward language Models
Prediction of LSTM-RNN Full Context States as a Subtask for ...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Kazuki Irie Zhihong Lei Ralf Schlüter Hermann Ney Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University D-52056 Aachen Germany
Long short-term memory (LSTM) recurrent neural network language models compress the full context of variable lengths into a fixed size vector. In this work, we investigate the task of predicting the LSTM hidden repres... 详细信息
来源: 评论
A comparative study on end-to-end speech to text translation
arXiv
收藏 引用
arXiv 2019年
作者: Bahar, Parnia Bieschke, Tobias Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department Rwth Aachen University Aachen52074 Germany AppTek GmbH Aachen52062
Recent advances in deep learning show that end-to-end speech to text translation model is a promising approach to direct the speech translation field. In this work, we provide an overview of different end-to-end archi... 详细信息
来源: 评论
INVESTIGATION ON CROSS- AND MULTILINGUAL MLP FEATURES UNDER MATCHED AND MISMATCHED ACOUSTICAL CONDITIONS
INVESTIGATION ON CROSS- AND MULTILINGUAL MLP FEATURES UNDER ...
收藏 引用
IEEE International Conference on Acoustics, Speech, and Signal Processing
作者: Zoltan Tuske Joel Pinto Daniel Willett Ralf Schluter Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Nuance Communications Deutschland GmbH
In this paper, Multi Layer Perceptron (MLP) based multilingual bottleneck features are investigated for acoustic modeling in three languages -- German, French, and US English. We use a modified training algorithm to h... 详细信息
来源: 评论
On using specaugment for end-to-end speech translation
arXiv
收藏 引用
arXiv 2019年
作者: Bahar, Parnia Zeyer, Albert Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University Aachen52062 Germany AppTek Aachen52062 Germany
This work investigates a simple data augmentation technique, SpecAugment, for end-to-end speech translation. SpecAugment is a low-cost implementation method applied directly to the audio input features and it consists...
来源: 评论
On using 2D sequence-to-sequence models for speech recognition
arXiv
收藏 引用
arXiv 2019年
作者: Bahar, Parnia Zeyer, Albert Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany AppTek McLean United States
Attention-based sequence-to-sequence models have shown promising results in automatic speech recognition. Using these architectures, one-dimensional input and output sequences are related by an attention approach, the... 详细信息
来源: 评论
Efficient Utilization of Large Pre-Trained Models for Low Resource ASR
arXiv
收藏 引用
arXiv 2022年
作者: Vieting, Peter Lüscher, Christoph Dierkes, Julian Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
Unsupervised representation learning has recently helped automatic speech recognition (ASR) to tackle tasks with limited labeled data. Following this, hardware limitations and applications give rise to the question ho... 详细信息
来源: 评论
Investigation of large-margin softmax in neural language modeling
arXiv
收藏 引用
arXiv 2020年
作者: Huo, Jingjing Gao, Yingbo Wang, Weiyue Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
To encourage intra-class compactness and inter-class separability among trainable feature vectors, large-margin softmax methods are developed and widely applied in the face recognition community. The introduction of t... 详细信息
来源: 评论
On sampling-based training criteria for neural language modeling
arXiv
收藏 引用
arXiv 2021年
作者: Gao, Yingbo Thulke, David Gerstenberger, Alexander Tran, Khoa Viet Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department Rwth Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
As the vocabulary size of modern word-based language models becomes ever larger, many sampling-based training criteria are proposed and investigated. The essence of these sampling methods is that the softmax-related t... 详细信息
来源: 评论
On architectures and training for raw waveform feature extraction in ASR
arXiv
收藏 引用
arXiv 2021年
作者: Vieting, Peter Lüscher, Christoph Michel, Wilfried Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
With the success of neural network based modeling in automatic speech recognition (ASR), many studies investigated acoustic modeling and learning of feature extractors directly based on the raw waveform. Recently, one... 详细信息
来源: 评论