咨询与建议

限定检索结果

文献类型

  • 146 篇 会议
  • 68 篇 期刊文献

馆藏范围

  • 214 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 151 篇 工学
    • 111 篇 计算机科学与技术...
    • 98 篇 软件工程
    • 44 篇 信息与通信工程
    • 13 篇 控制科学与工程
    • 12 篇 电气工程
    • 11 篇 电子科学与技术(可...
    • 8 篇 机械工程
    • 6 篇 生物工程
    • 5 篇 化学工程与技术
    • 5 篇 生物医学工程(可授...
    • 4 篇 光学工程
    • 2 篇 动力工程及工程热...
  • 101 篇 理学
    • 75 篇 物理学
    • 38 篇 数学
    • 19 篇 统计学(可授理学、...
    • 12 篇 系统科学
    • 7 篇 生物学
    • 5 篇 化学
    • 1 篇 地球物理学
  • 17 篇 管理学
    • 11 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
    • 3 篇 工商管理
    • 2 篇 公共管理
  • 4 篇 医学
    • 4 篇 临床医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 公共卫生与预防医...
  • 3 篇 法学
    • 2 篇 社会学
    • 1 篇 法学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 教育学
    • 1 篇 体育学
  • 1 篇 农学

主题

  • 51 篇 speech recogniti...
  • 15 篇 hidden markov mo...
  • 15 篇 training
  • 13 篇 neural machine t...
  • 12 篇 machine translat...
  • 12 篇 transducers
  • 11 篇 computer aided l...
  • 11 篇 decoding
  • 9 篇 recurrent neural...
  • 8 篇 speech
  • 8 篇 feature extracti...
  • 8 篇 neural network
  • 8 篇 error analysis
  • 7 篇 modelling langua...
  • 6 篇 vocabulary
  • 6 篇 optimization
  • 6 篇 handwriting reco...
  • 6 篇 humans
  • 5 篇 hierarchical sys...
  • 5 篇 modeling languag...

机构

  • 40 篇 human language t...
  • 37 篇 apptek gmbh aach...
  • 32 篇 human language t...
  • 20 篇 human language t...
  • 10 篇 human language t...
  • 9 篇 human language t...
  • 8 篇 computer science...
  • 8 篇 human language t...
  • 7 篇 spoken language ...
  • 7 篇 apptek gmbh aach...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 5 篇 human language t...
  • 4 篇 human language t...
  • 3 篇 human language t...
  • 3 篇 rwth aachen univ...
  • 3 篇 limsi cnrs spoke...
  • 3 篇 human language t...
  • 2 篇 computer vision ...

作者

  • 141 篇 ney hermann
  • 55 篇 schlüter ralf
  • 36 篇 hermann ney
  • 16 篇 zeyer albert
  • 16 篇 zhou wei
  • 14 篇 gao yingbo
  • 14 篇 ralf schluter
  • 12 篇 ralf schlüter
  • 12 篇 mansour saab
  • 12 篇 zeineldeen moham...
  • 12 篇 michel wilfried
  • 12 篇 zens richard
  • 11 篇 herold christian
  • 10 篇 bahar parnia
  • 10 篇 peitz stephan
  • 9 篇 peter jan-thorst...
  • 9 篇 schluter ralf
  • 9 篇 freitag markus
  • 9 篇 wang weiyue
  • 8 篇 wuebker joern

语言

  • 214 篇 英文
检索条件"机构=Human Language Technology and Pattern Recognition Group Computer Science"
214 条 记 录,以下是21-30 订阅
排序:
Neural language Modeling for Named Entity recognition  28
Neural Language Modeling for Named Entity Recognition
收藏 引用
28th International Conference on Computational Linguistics, COLING 2020
作者: Lei, Zhihong Wang, Weiyue Dugast, Christian Ney, Hermann Apple Inc. Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University Germany
Regardless of different word embedding and hidden layer structures of the neural architectures that are used in named entity recognition, a conditional random field layer is commonly used for the output. This work pro... 详细信息
来源: 评论
The RWTH Aachen University Supervised Machine Translation Systems for WMT 2018  3
The RWTH Aachen University Supervised Machine Translation Sy...
收藏 引用
3rd Conference on Machine Translation, WMT 2018 at the Conference on Empirical Methods in Natural language Processing, EMNLP 2018
作者: Schamper, Julian Rosendahl, Jan Bahar, Parnia Kim, Yunsu Nix, Arne Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
This paper describes the statistical machine translation systems developed at RWTH Aachen University for the German→English, English→Turkish and Chinese→English translation tasks of the EMNLP 2018 Third Conference ... 详细信息
来源: 评论
Pivot lightly-supervised training for statistical machine translation  10
Pivot lightly-supervised training for statistical machine tr...
收藏 引用
10th Conference of the Association for Machine Translation in the Americas, AMTA 2012
作者: Huck, Matthias Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
In this paper, we investigate large-scale lightly-supervised training with a pivot language: We augment a baseline statistical machine translation (SMT) system that has been trained on human-generated parallel trainin... 详细信息
来源: 评论
Insertion and deletion models for statistical machine translation
Insertion and deletion models for statistical machine transl...
收藏 引用
2012 Conference of the North American Chapter of the Association for Computational Linguistics: human language Technologies, NAACL HLT 2012
作者: Huck, Matthias Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
We investigate insertion and deletion models for hierarchical phrase-based statistical machine translation. Insertion and deletion models are designed as a means to avoid the omission of content words in the hypothese... 详细信息
来源: 评论
Unifying Input and Output Smoothing in Neural Machine Translation  28
Unifying Input and Output Smoothing in Neural Machine Transl...
收藏 引用
28th International Conference on Computational Linguistics, COLING 2020
作者: Gao, Yingbo Liao, Baohao Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
Soft contextualized data augmentation is a recent method that replaces one-hot representation of words with soft posterior distributions of an external language model, smoothing the input of neural machine translation... 详细信息
来源: 评论
The RWTH Aachen University English-German and German-English machine translation system for WMT 2017  2
The RWTH Aachen University English-German and German-English...
收藏 引用
2nd Conference on Machine Translation, WMT 2017
作者: Peter, Jan-Thorsten Guta, Andreas Alkhouli, Tamer Bahar, Parnia Rosendahl, Jan Rossenbach, Nick Graça, Miguel Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
This paper describes the statistical machine translation system developed at RWTH Aachen University for the English?German and German?English translation tasks of the EMNLP 2017 Second Conference on Machine Translatio... 详细信息
来源: 评论
The RWTH Aachen University Filtering System for the WMT 2018 Parallel Corpus Filtering Task  3
The RWTH Aachen University Filtering System for the WMT 2018...
收藏 引用
3rd Conference on Machine Translation, WMT 2018 at the Conference on Empirical Methods in Natural language Processing, EMNLP 2018
作者: Rossenbach, Nick Rosendahl, Jan Kim, Yunsu Graça, Miguel Gokrani, Aman Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
This paper describes the submission of RWTH Aachen University for the De→En parallel corpus filtering task of the EMNLP 2018 Third Conference on Machine Translation (WMT 2018). We use several rule-based, heuristic me... 详细信息
来源: 评论
Does Joint Training Really Help Cascaded Speech Translation?
Does Joint Training Really Help Cascaded Speech Translation?
收藏 引用
2022 Conference on Empirical Methods in Natural language Processing, EMNLP 2022
作者: Tran, Viet Anh Khoa Thulke, David Gao, Yingbo Herold, Christian Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
Currently, in speech translation, the straightforward approach - cascading a recognition system with a translation system - delivers state-of-the-art results. However, fundamental challenges such as error propagation ... 详细信息
来源: 评论
Biasing attention-based recurrent neural networks using external alignment information  2
Biasing attention-based recurrent neural networks using exte...
收藏 引用
2nd Conference on Machine Translation, WMT 2017
作者: Alkhouli, Tamer Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
This work explores extending attention-based neural models to include alignment information as input. We modify the attention component to have dependence on the current source position. The attention model is then us... 详细信息
来源: 评论
A Phrase Orientation Model for Hierarchical Machine Translation  8
A Phrase Orientation Model for Hierarchical Machine Translat...
收藏 引用
8th Workshop on Statistical Machine Translation, WMT 2013
作者: Huck, Matthias Wuebker, Joern Rietig, Felix Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
We introduce a lexicalized reordering model for hierarchical phrase-based machine translation. The model scores monotone, swap, and discontinuous phrase orientations in the manner of the one presented by Tillmann (200... 详细信息
来源: 评论