咨询与建议

限定检索结果

文献类型

  • 146 篇 会议
  • 68 篇 期刊文献

馆藏范围

  • 214 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 151 篇 工学
    • 111 篇 计算机科学与技术...
    • 98 篇 软件工程
    • 44 篇 信息与通信工程
    • 13 篇 控制科学与工程
    • 12 篇 电气工程
    • 11 篇 电子科学与技术(可...
    • 8 篇 机械工程
    • 6 篇 生物工程
    • 5 篇 化学工程与技术
    • 5 篇 生物医学工程(可授...
    • 4 篇 光学工程
    • 2 篇 动力工程及工程热...
  • 101 篇 理学
    • 75 篇 物理学
    • 38 篇 数学
    • 19 篇 统计学(可授理学、...
    • 12 篇 系统科学
    • 7 篇 生物学
    • 5 篇 化学
    • 1 篇 地球物理学
  • 17 篇 管理学
    • 11 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
    • 3 篇 工商管理
    • 2 篇 公共管理
  • 4 篇 医学
    • 4 篇 临床医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 公共卫生与预防医...
  • 3 篇 法学
    • 2 篇 社会学
    • 1 篇 法学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 教育学
    • 1 篇 体育学
  • 1 篇 农学

主题

  • 51 篇 speech recogniti...
  • 15 篇 hidden markov mo...
  • 15 篇 training
  • 13 篇 neural machine t...
  • 12 篇 machine translat...
  • 12 篇 transducers
  • 11 篇 computer aided l...
  • 11 篇 decoding
  • 9 篇 recurrent neural...
  • 8 篇 speech
  • 8 篇 feature extracti...
  • 8 篇 neural network
  • 8 篇 error analysis
  • 7 篇 modelling langua...
  • 6 篇 vocabulary
  • 6 篇 optimization
  • 6 篇 handwriting reco...
  • 6 篇 humans
  • 6 篇 automatic speech...
  • 5 篇 hierarchical sys...

机构

  • 40 篇 human language t...
  • 37 篇 apptek gmbh aach...
  • 32 篇 human language t...
  • 20 篇 human language t...
  • 10 篇 human language t...
  • 9 篇 human language t...
  • 8 篇 computer science...
  • 8 篇 human language t...
  • 7 篇 spoken language ...
  • 7 篇 apptek gmbh aach...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 5 篇 human language t...
  • 4 篇 human language t...
  • 3 篇 human language t...
  • 3 篇 rwth aachen univ...
  • 3 篇 limsi cnrs spoke...
  • 3 篇 human language t...
  • 2 篇 computer vision ...

作者

  • 141 篇 ney hermann
  • 55 篇 schlüter ralf
  • 36 篇 hermann ney
  • 16 篇 zeyer albert
  • 16 篇 zhou wei
  • 14 篇 gao yingbo
  • 14 篇 ralf schluter
  • 12 篇 ralf schlüter
  • 12 篇 mansour saab
  • 12 篇 zeineldeen moham...
  • 12 篇 michel wilfried
  • 12 篇 zens richard
  • 11 篇 herold christian
  • 10 篇 bahar parnia
  • 10 篇 peitz stephan
  • 9 篇 peter jan-thorst...
  • 9 篇 schluter ralf
  • 9 篇 freitag markus
  • 9 篇 wang weiyue
  • 8 篇 wuebker joern

语言

  • 214 篇 英文
检索条件"机构=Human Language Technology and Pattern Recognition Group Computer Science"
214 条 记 录,以下是31-40 订阅
排序:
Investigation on estimation of sentence probability by combining forward, backward and Bi-directional LSTM-RNNs  19
Investigation on estimation of sentence probability by combi...
收藏 引用
19th Annual Conference of the International Speech Communication, INTERSPEECH 2018
作者: Irie, Kazuki Lei, Zhihong Deng, Liuhui Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
A combination of forward and backward long short-term memory (LSTM) recurrent neural network (RNN) language models is a popular model combination approach to improve the estimation of the sequence probability in the s... 详细信息
来源: 评论
Discriminative reordering extensions for hierarchical phrase-based machine translation  16
Discriminative reordering extensions for hierarchical phrase...
收藏 引用
16th Annual Conference of the European Association for Machine Translation, EAMT 2012
作者: Huck, Matthias Peitz, Stephan Freitag, Markus Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
In this paper, we propose novel extensions of hierarchical phrase-based systems with a discriminative lexicalized reordering model. We compare different feature sets for the discriminative reordering model and investi... 详细信息
来源: 评论
Modeling Punctuation Prediction as Machine Translation  8
Modeling Punctuation Prediction as Machine Translation
收藏 引用
8th International Workshop on Spoken language Translation, IWSLT 2011
作者: Peitz, Stephan Freitag, Markus Mauser, Arne Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
Punctuation prediction is an important task in Spoken language Translation. The output of speech recognition systems does not typically contain punctuation marks. In this paper we analyze different methods for punctua... 详细信息
来源: 评论
Translation model based weighting for phrase extraction  17
Translation model based weighting for phrase extraction
收藏 引用
17th Annual Conference of the European Association for Machine Translation, EAMT 2014
作者: Mansour, Saab Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
Domain adaptation for statistical machine translation is the task of altering general models to improve performance on the test domain. In this work, we suggest several novel weighting schemes based on translation mod... 详细信息
来源: 评论
MorphTagger: HMM-Based Arabic Segmentation for Statistical Machine Translation  7
MorphTagger: HMM-Based Arabic Segmentation for Statistical M...
收藏 引用
7th International Workshop on Spoken language Translation, IWSLT 2010
作者: Mansour, Saab Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
In this paper, we investigate different methodologies of Arabic segmentation for statistical machine translation by comparing a rule-based segmenter to different statistically-based segmenters. We also present a new m... 详细信息
来源: 评论
A Simple and Effective Weighted Phrase Extraction for Machine Translation Adaptation  9
A Simple and Effective Weighted Phrase Extraction for Machin...
收藏 引用
9th International Workshop on Spoken language Translation, IWSLT 2012
作者: Mansour, Saab Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
The task of domain-adaptation attempts to exploit data mainly drawn from one domain (e.g. news) to maximize the performance on the test domain (e.g. weblogs). In previous work, weighting the training instances was use... 详细信息
来源: 评论
Improved decipherment of homophonic ciphers
Improved decipherment of homophonic ciphers
收藏 引用
2014 Conference on Empirical Methods in Natural language Processing, EMNLP 2014
作者: Nuhn, Malte Schamper, Julian Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
In this paper, we present two improvements to the beam search approach for solving homophonic substitution ciphers presented in Nuhn et al. (2013): An improved rest cost estimation together with an optimized strategy ... 详细信息
来源: 评论
Combining Translation and language Model Scoring for Domain-Specific Data Filtering  8
Combining Translation and Language Model Scoring for Domain-...
收藏 引用
8th International Workshop on Spoken language Translation, IWSLT 2011
作者: Mansour, Saab Wuebker, Joern Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
The increasing popularity of statistical machine translation (SMT) systems is introducing new domains of translation that need to be tackled. As many resources are already available, domain adaptation methods can be a... 详细信息
来源: 评论
Beam search for solving substitution ciphers
Beam search for solving substitution ciphers
收藏 引用
51st Annual Meeting of the Association for Computational Linguistics, ACL 2013
作者: Nuhn, Malte Schamper, Julian Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
In this paper we address the problem of solving substitution ciphers using a beam search approach. We present a conceptually consistent and easy to implement method that improves the current state of the art for decip... 详细信息
来源: 评论
Advancements in reordering models for statistical machine translation
Advancements in reordering models for statistical machine tr...
收藏 引用
51st Annual Meeting of the Association for Computational Linguistics, ACL 2013
作者: Feng, Minwei Peter, Jan-Thorsten Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
In this paper, we propose a novel reordering model based on sequence labeling techniques. Our model converts the reordering problem into a sequence labeling problem, i.e. a tagging task. Results on five Chinese-Englis... 详细信息
来源: 评论