咨询与建议

限定检索结果

文献类型

  • 146 篇 会议
  • 68 篇 期刊文献

馆藏范围

  • 214 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 151 篇 工学
    • 111 篇 计算机科学与技术...
    • 98 篇 软件工程
    • 44 篇 信息与通信工程
    • 13 篇 控制科学与工程
    • 12 篇 电气工程
    • 11 篇 电子科学与技术(可...
    • 8 篇 机械工程
    • 6 篇 生物工程
    • 5 篇 化学工程与技术
    • 5 篇 生物医学工程(可授...
    • 4 篇 光学工程
    • 2 篇 动力工程及工程热...
  • 101 篇 理学
    • 75 篇 物理学
    • 38 篇 数学
    • 19 篇 统计学(可授理学、...
    • 12 篇 系统科学
    • 7 篇 生物学
    • 5 篇 化学
    • 1 篇 地球物理学
  • 17 篇 管理学
    • 11 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
    • 3 篇 工商管理
    • 2 篇 公共管理
  • 4 篇 医学
    • 4 篇 临床医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 公共卫生与预防医...
  • 3 篇 法学
    • 2 篇 社会学
    • 1 篇 法学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 教育学
    • 1 篇 体育学
  • 1 篇 农学

主题

  • 51 篇 speech recogniti...
  • 15 篇 hidden markov mo...
  • 15 篇 training
  • 13 篇 neural machine t...
  • 12 篇 machine translat...
  • 12 篇 transducers
  • 11 篇 computer aided l...
  • 11 篇 decoding
  • 9 篇 recurrent neural...
  • 8 篇 speech
  • 8 篇 feature extracti...
  • 8 篇 neural network
  • 8 篇 error analysis
  • 7 篇 modelling langua...
  • 6 篇 vocabulary
  • 6 篇 optimization
  • 6 篇 handwriting reco...
  • 6 篇 humans
  • 6 篇 automatic speech...
  • 5 篇 hierarchical sys...

机构

  • 40 篇 human language t...
  • 37 篇 apptek gmbh aach...
  • 32 篇 human language t...
  • 20 篇 human language t...
  • 10 篇 human language t...
  • 9 篇 human language t...
  • 8 篇 computer science...
  • 8 篇 human language t...
  • 7 篇 spoken language ...
  • 7 篇 apptek gmbh aach...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 5 篇 human language t...
  • 4 篇 human language t...
  • 3 篇 human language t...
  • 3 篇 rwth aachen univ...
  • 3 篇 limsi cnrs spoke...
  • 3 篇 human language t...
  • 2 篇 computer vision ...

作者

  • 141 篇 ney hermann
  • 55 篇 schlüter ralf
  • 36 篇 hermann ney
  • 16 篇 zeyer albert
  • 16 篇 zhou wei
  • 14 篇 gao yingbo
  • 14 篇 ralf schluter
  • 12 篇 ralf schlüter
  • 12 篇 mansour saab
  • 12 篇 zeineldeen moham...
  • 12 篇 michel wilfried
  • 12 篇 zens richard
  • 11 篇 herold christian
  • 10 篇 bahar parnia
  • 10 篇 peitz stephan
  • 9 篇 peter jan-thorst...
  • 9 篇 schluter ralf
  • 9 篇 freitag markus
  • 9 篇 wang weiyue
  • 8 篇 wuebker joern

语言

  • 214 篇 英文
检索条件"机构=Human Language Technology and Pattern Recognition Group Computer Science"
214 条 记 录,以下是51-60 订阅
排序:
Investigation on data adaptation techniques for neural named entity recognition  59
Investigation on data adaptation techniques for neural named...
收藏 引用
2021 Student Research Workshop, SRW 2021 at the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural language Processing, ACL-IJCNLP 2021
作者: Tokarchuk, Evgeniia Thulke, David Wang, Weiyue Dugast, Christian Ney, Hermann Informatics Institute University of Amsterdam Netherlands Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University Germany
Data processing is an important step in various natural language processing tasks. As the commonly used datasets in named entity recognition contain only a limited number of samples, it is important to obtain addition... 详细信息
来源: 评论
Hybrid language models using mixed types of sub-lexical units for open vocabulary German LVCSR
Hybrid language models using mixed types of sub-lexical unit...
收藏 引用
12th Annual Conference of the International Speech Communication Association, INTERSPEECH 2011
作者: Ali Basha Shaik, M. El-Desoky Mousa, Amr Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University 52056 Aachen Germany
German is a highly inflected language with a large number of words derived from the same root. It makes use of a high degree of word compounding leading to high Out-of-vocabulary (OOV) rates, and language Model (LM) p... 详细信息
来源: 评论
Morpheme based Factored language Models for German LVCSR
Morpheme based Factored Language Models for German LVCSR
收藏 引用
12th Annual Conference of the International Speech Communication Association, INTERSPEECH 2011
作者: El-Desoky Mousa, Amr Ali Basha Shaik, M. Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University 52056 Aachen Germany
German is a highly inflectional language, where a large number of words can be generated from the same root. It makes a liberal use of compounding leading to high Out-of-vocabulary (OOV) rates, and poor language Model... 详细信息
来源: 评论
Returnn: The RWTH extensible training framework for universal recurrent neural networks
Returnn: The RWTH extensible training framework for universa...
收藏 引用
2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017
作者: Doetsch, Patrick Zeyer, Albert Voigtlaender, Paul Kulikov, Ilia Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52062 Germany
In this work we release our extensible and easily configurable neural network training software. It provides a rich set of functional layers with a particular focus on efficient training of recurrent neural network to... 详细信息
来源: 评论
Acoustic feature combination for robust speech recognition
Acoustic feature combination for robust speech recognition
收藏 引用
2005 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP '05
作者: Zolnay, András Schlüter, Ralf Ney, Hermann Computer Science Department Human Language Technology and Pattern Recognition RWTH Aachen University 52056 Aachen Germany
In this paper, we consider the use of multiple acoustic features of the speech signal for robust speech recognition. We investigate the combination of various auditory based (Mel Frequency Cepstrum Coefficients, Perce... 详细信息
来源: 评论
CharacTER: Translation Edit Rate on Character Level  1
CharacTER: Translation Edit Rate on Character Level
收藏 引用
1st Conference on Machine Translation, WMT 2016, held at the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016
作者: Wang, Weiyue Peter, Jan-Thorsten Rosendahl, Hendrik Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52056 Germany
Recently, the capability of character-level evaluation measures for machine translation output has been confirmed by several metrics. This work proposes translation edit rate on character level (CharacTER), which calc... 详细信息
来源: 评论
Non-Stationary Signal Processing and its Application in Speech recognition
Non-Stationary Signal Processing and its Application in Spee...
收藏 引用
2012 SAPA-SCALE Conference
作者: Tüske, Zoltán Drepper, Friedhelm R. Schlüter, Ralf Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52056 Germany
The most widely used acoustic feature extraction methods of current automatic speech recognition (ASR) systems are based on the assumption of stationarity. In this paper we extensively evaluate a recently introduced f... 详细信息
来源: 评论
Improved strategies for a zero oov rate LVCSR system  40
Improved strategies for a zero oov rate LVCSR system
收藏 引用
40th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2015
作者: Shaik, M. Ali Basha Mousa, Amr El-Desoky Hahn, Stefan Schluter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition - Computer Science Department RWTH Aachen University Aachen Germany Spoken Language Processing Group LIMSI CNRS Paris France
In this work, multiple hierarchical language modeling strategies for a zero OOV rate large vocabulary continuous speech recognition system are investigated. In our previously proposed hierarchical approach, a full-wor... 详细信息
来源: 评论
Investigations on sequence training of neural networks  40
Investigations on sequence training of neural networks
收藏 引用
40th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2015
作者: Wiesler, Simon Golik, Pavel Schluter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany LIMSI CNRS Spoken Language Processing Group Paris France
In this paper we present an investigation of sequence-discriminative training of deep neural networks for automatic speech recognition. We evaluate different sequence-discriminative training criteria (MMI and MPE) and... 详细信息
来源: 评论
Feature-rich sub-lexical language models using a maximum entropy approach for German LVCSR
Feature-rich sub-lexical language models using a maximum ent...
收藏 引用
14th Annual Conference of the International Speech Communication Association, INTERSPEECH 2013
作者: Shaik, M. Ali Basha El-Desoky Mousa, Amr Schlüter, Ralf Ney, Hermann Computer Science Department Human Language Technology and Pattern Recognition RWTH Aachen University Aachen Germany Spoken Language Processing Group LIMSI CNRS Paris France
German is a morphologically rich language having a high degree of word inflections, derivations and compounding. This leads to high out-of-vocabulary (OOV) rates and poor language model (LM) probabilities in the large... 详细信息
来源: 评论