咨询与建议

限定检索结果

文献类型

  • 153 篇 会议
  • 84 篇 期刊文献

馆藏范围

  • 237 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 163 篇 工学
    • 120 篇 计算机科学与技术...
    • 106 篇 软件工程
    • 45 篇 信息与通信工程
    • 14 篇 控制科学与工程
    • 12 篇 电气工程
    • 11 篇 电子科学与技术(可...
    • 9 篇 生物工程
    • 8 篇 机械工程
    • 8 篇 生物医学工程(可授...
    • 6 篇 化学工程与技术
    • 5 篇 光学工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 动力工程及工程热...
  • 108 篇 理学
    • 76 篇 物理学
    • 37 篇 数学
    • 19 篇 统计学(可授理学、...
    • 13 篇 系统科学
    • 11 篇 生物学
    • 6 篇 化学
  • 19 篇 管理学
    • 12 篇 图书情报与档案管...
    • 5 篇 管理科学与工程(可...
    • 3 篇 工商管理
    • 3 篇 公共管理
  • 9 篇 医学
    • 8 篇 临床医学
    • 5 篇 基础医学(可授医学...
    • 4 篇 公共卫生与预防医...
    • 2 篇 药学(可授医学、理...
  • 4 篇 法学
    • 4 篇 社会学
  • 4 篇 教育学
    • 2 篇 心理学(可授教育学...
  • 1 篇 哲学
    • 1 篇 哲学
  • 1 篇 经济学
  • 1 篇 文学
  • 1 篇 历史学
  • 1 篇 农学
  • 1 篇 艺术学

主题

  • 53 篇 speech recogniti...
  • 15 篇 training
  • 14 篇 hidden markov mo...
  • 13 篇 neural machine t...
  • 12 篇 machine translat...
  • 12 篇 transducers
  • 11 篇 computer aided l...
  • 11 篇 decoding
  • 9 篇 error analysis
  • 9 篇 recurrent neural...
  • 8 篇 speech
  • 8 篇 feature extracti...
  • 8 篇 neural network
  • 7 篇 modelling langua...
  • 7 篇 humans
  • 6 篇 signal processin...
  • 6 篇 vocabulary
  • 6 篇 handwriting reco...
  • 6 篇 automatic speech...
  • 5 篇 hierarchical sys...

机构

  • 40 篇 human language t...
  • 37 篇 apptek gmbh aach...
  • 32 篇 human language t...
  • 20 篇 human language t...
  • 10 篇 human language t...
  • 9 篇 human language t...
  • 8 篇 computer science...
  • 8 篇 human language t...
  • 7 篇 spoken language ...
  • 7 篇 apptek gmbh aach...
  • 6 篇 human language t...
  • 6 篇 apptek gmbh
  • 6 篇 human language t...
  • 5 篇 human language t...
  • 5 篇 human language t...
  • 4 篇 human language t...
  • 3 篇 human language t...
  • 3 篇 informatics inst...
  • 3 篇 rwth aachen univ...
  • 3 篇 limsi cnrs spoke...

作者

  • 141 篇 ney hermann
  • 57 篇 schlüter ralf
  • 37 篇 hermann ney
  • 16 篇 zeyer albert
  • 16 篇 zhou wei
  • 14 篇 gao yingbo
  • 14 篇 ralf schlüter
  • 14 篇 ralf schluter
  • 12 篇 mansour saab
  • 12 篇 zeineldeen moham...
  • 12 篇 michel wilfried
  • 12 篇 zens richard
  • 11 篇 herold christian
  • 10 篇 bahar parnia
  • 10 篇 peitz stephan
  • 9 篇 peter jan-thorst...
  • 9 篇 schluter ralf
  • 9 篇 freitag markus
  • 9 篇 yang zijian
  • 9 篇 wang weiyue

语言

  • 234 篇 英文
  • 3 篇 其他
检索条件"机构=Human Language Technology and Pattern Recognition Group Computer Science Department"
237 条 记 录,以下是151-160 订阅
Advancements in reordering models for statistical machine translation
Advancements in reordering models for statistical machine tr...
收藏 引用
51st Annual Meeting of the Association for Computational Linguistics, ACL 2013
作者: Feng, Minwei Peter, Jan-Thorsten Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
In this paper, we propose a novel reordering model based on sequence labeling techniques. Our model converts the reordering problem into a sequence labeling problem, i.e. a tagging task. Results on five Chinese-Englis... 详细信息
来源: 评论
Decipherment complexity in 1:1 substitution ciphers
Decipherment complexity in 1:1 substitution ciphers
收藏 引用
51st Annual Meeting of the Association for Computational Linguistics, ACL 2013
作者: Nuhn, Malte Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
In this paper we show that even for the case of 1:1 substitution ciphers-which encipher plaintext symbols by exchanging them with a unique substitute-finding the optimal decipherment with respect to a bigram language ... 详细信息
来源: 评论
Phrase training based adaptation for statistical machine translation
Phrase training based adaptation for statistical machine tra...
收藏 引用
2013 Conference of the North American Chapter of the Association for Computational Linguistics: human language Technologies, NAACL HLT 2013
作者: Mansour, Saab Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
We present a novel approach for translation model (TM) adaptation using phrase training. The proposed adaptation procedure is initialized with a standard general-domain TM, which is then used to perform phrase trainin... 详细信息
来源: 评论
Phrase Training Based Adaptation for Statistical Machine Translation  2
Phrase Training Based Adaptation for Statistical Machine Tra...
收藏 引用
2nd Workshop on Computational Linguistics for Literature, CLfL 2013 at the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: human language Technologies, NAACL-HLT 2013
作者: Mansour, Saab Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
We present a novel approach for translation model (TM) adaptation using phrase training. The proposed adaptation procedure is initialized with a standard general-domain TM, which is then used to perform phrase trainin... 详细信息
来源: 评论
Feature-rich sub-lexical language models using a maximum entropy approach for German LVCSR
Feature-rich sub-lexical language models using a maximum ent...
收藏 引用
14th Annual Conference of the International Speech Communication Association, INTERSPEECH 2013
作者: Shaik, M. Ali Basha El-Desoky Mousa, Amr Schlüter, Ralf Ney, Hermann Computer Science Department Human Language Technology and Pattern Recognition RWTH Aachen University Aachen Germany Spoken Language Processing Group LIMSI CNRS Paris France
German is a morphologically rich language having a high degree of word inflections, derivations and compounding. This leads to high out-of-vocabulary (OOV) rates and poor language model (LM) probabilities in the large... 详细信息
来源: 评论
Morpheme level hierarchical pitman-Yor class-based language models for LVCSR of morphologically rich languages
Morpheme level hierarchical pitman-Yor class-based language ...
收藏 引用
14th Annual Conference of the International Speech Communication Association, INTERSPEECH 2013
作者: El-Desoky Mousa, Amr Shaik, M. Ali Basha Schlüter, Ralf Ney, Hermann Computer Science Department Human Language Technology and Pattern Recognition RWTH Aachen University Aachen Germany Spoken Language Processing Group LIMSI CNRS Paris France
Performing large vocabulary continuous speech recognition (LVCSR) for morphologically rich languages is considered a challenging task. The morphological richness of such languages leads to high out-of-vocabulary (OOV)... 详细信息
来源: 评论
Investigations on hessian-free optimization for cross-entropy training of deep neural networks
Investigations on hessian-free optimization for cross-entrop...
收藏 引用
14th Annual Conference of the International Speech Communication Association, INTERSPEECH 2013
作者: Wiesler, Simon Li, Jinyu Xue, Jian Computer Science Department Human Language Technology and Pattern Recognition RWTH Aachen University 52056 Aachen Germany Microsoft Corporation Redmond WA 98052 United States
Context-dependent deep neural network HMMs have been shown to achieve recognition accuracy superior to Gaussian mixture models in a number of recent works. Typically, neural networks are optimized with stochastic grad... 详细信息
来源: 评论
OPEN VOCABULARY HANDWRITING recognition USING COMBINED WORD-LEVEL AND CHARACTER-LEVEL language MODELS
OPEN VOCABULARY HANDWRITING RECOGNITION USING COMBINED WORD-...
收藏 引用
IEEE International Conference on Acoustics, Speech, and Signal Processing
作者: Michal Kozielski David Rybach Stefan Hahn Ralf Schluter Hermann Ney Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
In this paper, we present a unified search strategy for open vocabulary handwriting recognition using weighted finite state transducers. Additionally to a standard word-level language model we introduce a separate n-g... 详细信息
来源: 评论
FEATURE COMBINATION AND STACKING OF RECURRENT AND NON-RECURRENT NEURAL NETWORKS FOR LVCSR
FEATURE COMBINATION AND STACKING OF RECURRENT AND NON-RECURR...
收藏 引用
IEEE International Conference on Acoustics, Speech, and Signal Processing
作者: Christian Plahl Michael Kozielski Ralf Schluter Hermann Ney Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University
This paper investigates the combination of different short-term features and the combination of recurrent and non-recurrent neural networks (NNs) on a Spanish speech recognition task. Several methods exist to combine ... 详细信息
来源: 评论
Morpheme-based feature-rich language models using Deep Neural Networks for LVCSR of Egyptian Arabic
Morpheme-based feature-rich language models using Deep Neura...
收藏 引用
2013 38th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2013
作者: El-Desoky Mousa, Amr Kuo, Hong-Kwang Jeff Mangu, Lidia Soltau, Hagen Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University 52056 Aachen Germany IBM T. J. Watson Research Center Yorktown Heights NY 10598 United States
Egyptian Arabic (EA) is a colloquial version of Arabic. It is a low-resource morphologically rich language that causes problems in Large Vocabulary Continuous Speech recognition (LVCSR). Building LMs on morpheme level... 详细信息
来源: 评论