咨询与建议

限定检索结果

文献类型

  • 153 篇 会议
  • 85 篇 期刊文献

馆藏范围

  • 238 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 164 篇 工学
    • 120 篇 计算机科学与技术...
    • 106 篇 软件工程
    • 46 篇 信息与通信工程
    • 14 篇 控制科学与工程
    • 12 篇 电气工程
    • 11 篇 电子科学与技术(可...
    • 9 篇 生物工程
    • 8 篇 机械工程
    • 8 篇 生物医学工程(可授...
    • 6 篇 化学工程与技术
    • 5 篇 光学工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 动力工程及工程热...
  • 109 篇 理学
    • 77 篇 物理学
    • 37 篇 数学
    • 19 篇 统计学(可授理学、...
    • 13 篇 系统科学
    • 11 篇 生物学
    • 6 篇 化学
  • 19 篇 管理学
    • 12 篇 图书情报与档案管...
    • 5 篇 管理科学与工程(可...
    • 3 篇 工商管理
    • 3 篇 公共管理
  • 9 篇 医学
    • 8 篇 临床医学
    • 5 篇 基础医学(可授医学...
    • 4 篇 公共卫生与预防医...
    • 2 篇 药学(可授医学、理...
  • 4 篇 法学
    • 4 篇 社会学
  • 4 篇 教育学
    • 2 篇 心理学(可授教育学...
  • 1 篇 哲学
    • 1 篇 哲学
  • 1 篇 经济学
  • 1 篇 文学
  • 1 篇 历史学
  • 1 篇 农学
  • 1 篇 艺术学

主题

  • 53 篇 speech recogniti...
  • 15 篇 training
  • 14 篇 hidden markov mo...
  • 13 篇 neural machine t...
  • 12 篇 machine translat...
  • 12 篇 transducers
  • 11 篇 computer aided l...
  • 11 篇 decoding
  • 9 篇 error analysis
  • 9 篇 recurrent neural...
  • 8 篇 speech
  • 8 篇 feature extracti...
  • 8 篇 neural network
  • 7 篇 modelling langua...
  • 7 篇 humans
  • 6 篇 signal processin...
  • 6 篇 vocabulary
  • 6 篇 handwriting reco...
  • 5 篇 hierarchical sys...
  • 5 篇 modeling languag...

机构

  • 40 篇 human language t...
  • 38 篇 apptek gmbh aach...
  • 32 篇 human language t...
  • 20 篇 human language t...
  • 10 篇 human language t...
  • 9 篇 human language t...
  • 8 篇 computer science...
  • 8 篇 human language t...
  • 7 篇 spoken language ...
  • 7 篇 apptek gmbh aach...
  • 6 篇 human language t...
  • 6 篇 apptek gmbh
  • 6 篇 human language t...
  • 5 篇 human language t...
  • 5 篇 human language t...
  • 4 篇 human language t...
  • 3 篇 human language t...
  • 3 篇 informatics inst...
  • 3 篇 rwth aachen univ...
  • 3 篇 limsi cnrs spoke...

作者

  • 141 篇 ney hermann
  • 58 篇 schlüter ralf
  • 37 篇 hermann ney
  • 16 篇 zeyer albert
  • 16 篇 zhou wei
  • 14 篇 gao yingbo
  • 14 篇 ralf schlüter
  • 14 篇 ralf schluter
  • 12 篇 mansour saab
  • 12 篇 zeineldeen moham...
  • 12 篇 michel wilfried
  • 12 篇 zens richard
  • 11 篇 herold christian
  • 10 篇 bahar parnia
  • 10 篇 peitz stephan
  • 9 篇 peter jan-thorst...
  • 9 篇 schluter ralf
  • 9 篇 freitag markus
  • 9 篇 yang zijian
  • 9 篇 wang weiyue

语言

  • 236 篇 英文
  • 2 篇 其他
检索条件"机构=Human Language Technology and Pattern Recognition Group Computer Science Department"
238 条 记 录,以下是191-200 订阅
排序:
ENHANCING AND ADVERSARIAL: IMPROVE ASR WITH SPEAKER LABELS
arXiv
收藏 引用
arXiv 2022年
作者: Zhou, Wei Wu, Haotian Xu, Jingjing Zeineldeen, Mohammad Lüscher, Christoph Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
ASR can be improved by multi-task learning (MTL) with domain enhancing or domain adversarial training, which are two opposite objectives with the aim to increase/decrease domain variance towards domain-aware/agnostic ... 详细信息
来源: 评论
MORPHEME-BASED FEATURE-RICH language MODELS USING DEEP NEURAL NETWORKS FOR LVCSR OF EGYPTIAN ARABIC
MORPHEME-BASED FEATURE-RICH LANGUAGE MODELS USING DEEP NEURA...
收藏 引用
IEEE International Conference on Acoustics, Speech, and Signal Processing
作者: Amr El-Desoky Mousa Hong-Kwang Jeff Kuo Lidia Mangu Hagen Soltau Human Language Technology and Pattern Recognition - Computer Science Department RWTH Aachen University IBM T. J. Watson Research Center
Egyptian Arabic (EA) is a colloquial version of Arabic. It is a low-resource morphologically rich language that causes problems in Large Vocabulary Continuous Speech recognition (LVCSR). Building LMs on morpheme level... 详细信息
来源: 评论
Equivalence of segmental and neural transducer modeling: A proof of concept
arXiv
收藏 引用
arXiv 2021年
作者: Zhou, Wei Zeyer, Albert Merboldt, André Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
With the advent of direct models in automatic speech recognition (ASR), the formerly prevalent frame-wise acoustic modeling based on hidden Markov models (HMM) diversified into a number of modeling architectures like ... 详细信息
来源: 评论
Cumulative adaptation for BLSTM acoustic models
arXiv
收藏 引用
arXiv 2019年
作者: Kitza, Markus Golik, Pavel Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
This paper addresses the robust speech recognition problem as an adaptation task. Specifically, we investigate the cumulative application of adaptation methods. A bidirectional Long Short-Term Memory (BLSTM) based neu... 详细信息
来源: 评论
CONFORMER-BASED HYBRID ASR SYSTEM FOR SWITCHBOARD DATASET
arXiv
收藏 引用
arXiv 2021年
作者: Zeineldeen, Mohammad Xu, Jingjing Lüscher, Christoph Michel, Wilfried Gerstenberger, Alexander Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
The recently proposed conformer architecture has been successfully used for end-to-end automatic speech recognition (ASR) architectures achieving state-of-the-art performance on different datasets. To our best knowled... 详细信息
来源: 评论
Improved training of end-to-end attention models for speech recognition
arXiv
收藏 引用
arXiv 2018年
作者: Zeyer, Albert Irie, Kazuki Schlüter, Ralf Ney, Hermann Computer Science Department Rwth Aachen University Human Language Technology and Pattern Recognition Aachen52062 Germany AppTek United States Nnaisense Switzerland
Sequence-to-sequence attention-based models on subword units allow simple open-vocabulary end-to-end speech recognition. In this work, we show that such models can achieve competitive results on the Switchboard 300h a... 详细信息
来源: 评论
The rwth asr system for ted-lium release 2: improving hybrid hmm with specaugment
arXiv
收藏 引用
arXiv 2020年
作者: Zhou, Wei Michel, Wilfried Irie, Kazuki Kitza, Markus Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
We present a complete training pipeline to build a state-of-the-art hybrid HMM-based ASR system on the 2nd release of the TED-LIUM corpus. Data augmentation using SpecAugment is successfully applied to improve perform... 详细信息
来源: 评论
A systematic comparison of grapheme-based vs. phoneme-based label units for encoder-decoder-attention models
arXiv
收藏 引用
arXiv 2020年
作者: Zeineldeen, Mohammad Zeyer, Albert Zhou, Wei Ng, Thomas Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University 52062 Aachen Germany AppTek GmbH Aachen52062 Germany
Following the rationale of end-to-end modeling, CTC, RNN-T or encoder-decoder-attention models for automatic speech recognition (ASR) use graphemes or grapheme-based subword units based on e.g. byte-pair encoding (BPE... 详细信息
来源: 评论
Robust Beam Search for Encoder-Decoder Attention Based Speech recognition without Length Bias
arXiv
收藏 引用
arXiv 2020年
作者: Zhou, Wei Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
As one popular modeling approach for end-to-end speech recognition, attention-based encoder-decoder models are known to suffer the length bias and corresponding beam problem. Different approaches have been applied in ... 详细信息
来源: 评论
Comparing the benefit of synthetic training data for various automatic speech recognition architectures
arXiv
收藏 引用
arXiv 2021年
作者: Rossenbach, Nick Zeineldeen, Mohammad Hilmes, Benedikt Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
Recent publications on automatic-speech-recognition (ASR) have a strong focus on attention encoder-decoder (AED) architectures which tend to suffer from over-fitting in low resource scenarios. One solution to tackle t... 详细信息
来源: 评论