咨询与建议

限定检索结果

文献类型

  • 153 篇 会议
  • 85 篇 期刊文献

馆藏范围

  • 238 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 164 篇 工学
    • 120 篇 计算机科学与技术...
    • 106 篇 软件工程
    • 46 篇 信息与通信工程
    • 14 篇 控制科学与工程
    • 12 篇 电气工程
    • 11 篇 电子科学与技术(可...
    • 9 篇 生物工程
    • 8 篇 机械工程
    • 8 篇 生物医学工程(可授...
    • 6 篇 化学工程与技术
    • 5 篇 光学工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 动力工程及工程热...
  • 109 篇 理学
    • 77 篇 物理学
    • 37 篇 数学
    • 19 篇 统计学(可授理学、...
    • 13 篇 系统科学
    • 11 篇 生物学
    • 6 篇 化学
  • 19 篇 管理学
    • 12 篇 图书情报与档案管...
    • 5 篇 管理科学与工程(可...
    • 3 篇 工商管理
    • 3 篇 公共管理
  • 9 篇 医学
    • 8 篇 临床医学
    • 5 篇 基础医学(可授医学...
    • 4 篇 公共卫生与预防医...
    • 2 篇 药学(可授医学、理...
  • 4 篇 法学
    • 4 篇 社会学
  • 4 篇 教育学
    • 2 篇 心理学(可授教育学...
  • 1 篇 哲学
    • 1 篇 哲学
  • 1 篇 经济学
  • 1 篇 文学
  • 1 篇 历史学
  • 1 篇 农学
  • 1 篇 艺术学

主题

  • 53 篇 speech recogniti...
  • 15 篇 training
  • 14 篇 hidden markov mo...
  • 13 篇 neural machine t...
  • 12 篇 machine translat...
  • 12 篇 transducers
  • 11 篇 computer aided l...
  • 11 篇 decoding
  • 9 篇 error analysis
  • 9 篇 recurrent neural...
  • 8 篇 speech
  • 8 篇 feature extracti...
  • 8 篇 neural network
  • 7 篇 modelling langua...
  • 7 篇 humans
  • 6 篇 signal processin...
  • 6 篇 vocabulary
  • 6 篇 handwriting reco...
  • 5 篇 hierarchical sys...
  • 5 篇 modeling languag...

机构

  • 40 篇 human language t...
  • 38 篇 apptek gmbh aach...
  • 32 篇 human language t...
  • 20 篇 human language t...
  • 10 篇 human language t...
  • 9 篇 human language t...
  • 8 篇 computer science...
  • 8 篇 human language t...
  • 7 篇 spoken language ...
  • 7 篇 apptek gmbh aach...
  • 6 篇 human language t...
  • 6 篇 apptek gmbh
  • 6 篇 human language t...
  • 5 篇 human language t...
  • 5 篇 human language t...
  • 4 篇 human language t...
  • 3 篇 human language t...
  • 3 篇 informatics inst...
  • 3 篇 rwth aachen univ...
  • 3 篇 limsi cnrs spoke...

作者

  • 141 篇 ney hermann
  • 58 篇 schlüter ralf
  • 37 篇 hermann ney
  • 16 篇 zeyer albert
  • 16 篇 zhou wei
  • 14 篇 gao yingbo
  • 14 篇 ralf schlüter
  • 14 篇 ralf schluter
  • 12 篇 mansour saab
  • 12 篇 zeineldeen moham...
  • 12 篇 michel wilfried
  • 12 篇 zens richard
  • 11 篇 herold christian
  • 10 篇 bahar parnia
  • 10 篇 peitz stephan
  • 9 篇 peter jan-thorst...
  • 9 篇 schluter ralf
  • 9 篇 freitag markus
  • 9 篇 yang zijian
  • 9 篇 wang weiyue

语言

  • 236 篇 英文
  • 2 篇 其他
检索条件"机构=Human Language Technology and Pattern Recognition Group Computer Science Department"
238 条 记 录,以下是61-70 订阅
排序:
Improved strategies for a zero oov rate LVCSR system  40
Improved strategies for a zero oov rate LVCSR system
收藏 引用
40th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2015
作者: Shaik, M. Ali Basha Mousa, Amr El-Desoky Hahn, Stefan Schluter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition - Computer Science Department RWTH Aachen University Aachen Germany Spoken Language Processing Group LIMSI CNRS Paris France
In this work, multiple hierarchical language modeling strategies for a zero OOV rate large vocabulary continuous speech recognition system are investigated. In our previously proposed hierarchical approach, a full-wor... 详细信息
来源: 评论
Investigations on sequence training of neural networks  40
Investigations on sequence training of neural networks
收藏 引用
40th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2015
作者: Wiesler, Simon Golik, Pavel Schluter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany LIMSI CNRS Spoken Language Processing Group Paris France
In this paper we present an investigation of sequence-discriminative training of deep neural networks for automatic speech recognition. We evaluate different sequence-discriminative training criteria (MMI and MPE) and... 详细信息
来源: 评论
Sequence-discriminative training of recurrent neural networks  40
Sequence-discriminative training of recurrent neural network...
收藏 引用
40th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2015
作者: Voigtlaender, Paul Doetsch, Patrick Wiesler, Simon Schluter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany LIMSI CNRS Spoken Language Processing Group Paris France
We investigate sequence-discriminative training of long shortterm memory recurrent neural networks using the maximum mutual information criterion. We show that although recurrent neural networks already make use of th... 详细信息
来源: 评论
Feature-rich sub-lexical language models using a maximum entropy approach for German LVCSR
Feature-rich sub-lexical language models using a maximum ent...
收藏 引用
14th Annual Conference of the International Speech Communication Association, INTERSPEECH 2013
作者: Shaik, M. Ali Basha El-Desoky Mousa, Amr Schlüter, Ralf Ney, Hermann Computer Science Department Human Language Technology and Pattern Recognition RWTH Aachen University Aachen Germany Spoken Language Processing Group LIMSI CNRS Paris France
German is a morphologically rich language having a high degree of word inflections, derivations and compounding. This leads to high out-of-vocabulary (OOV) rates and poor language model (LM) probabilities in the large... 详细信息
来源: 评论
Morpheme level hierarchical pitman-Yor class-based language models for LVCSR of morphologically rich languages
Morpheme level hierarchical pitman-Yor class-based language ...
收藏 引用
14th Annual Conference of the International Speech Communication Association, INTERSPEECH 2013
作者: El-Desoky Mousa, Amr Shaik, M. Ali Basha Schlüter, Ralf Ney, Hermann Computer Science Department Human Language Technology and Pattern Recognition RWTH Aachen University Aachen Germany Spoken Language Processing Group LIMSI CNRS Paris France
Performing large vocabulary continuous speech recognition (LVCSR) for morphologically rich languages is considered a challenging task. The morphological richness of such languages leads to high out-of-vocabulary (OOV)... 详细信息
来源: 评论
RWTHLM - The RWTH Aachen University neural network language modeling toolkit  15
RWTHLM - The RWTH Aachen University neural network language ...
收藏 引用
15th Annual Conference of the International Speech Communication Association: Celebrating the Diversity of Spoken languages, INTERSPEECH 2014
作者: Sundermeyer, Martin Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany Spoken Language Processing Group LIMSI CNRS Paris France
We present a novel toolkit that implements the long short-term memory (LSTM) neural network concept for language modeling. The main goal is to provide a software which is easy to use, and which allows fast training of... 详细信息
来源: 评论
Integrating Gaussian mixtures into deep neural networks: Softmax layer with hidden variables  40
Integrating Gaussian mixtures into deep neural networks: Sof...
收藏 引用
40th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2015
作者: Tuske, Zoltan Tahir, Muhammad Ali Schluter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany Spoken Language Processing Group LIMSI CNRS Paris France
In the hybrid approach, neural network output directly serves as hidden Markov model (HMM) state posterior probability estimates. In contrast to this, in the tandem approach neural network output is used as input feat... 详细信息
来源: 评论
Extraction methods of voicing feature for robust speech recognition  8
Extraction methods of voicing feature for robust speech reco...
收藏 引用
8th European Conference on Speech Communication and technology, EUROSPEECH 2003
作者: Zolnay, András Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Department of Computer Science VI RWTH Aachen - University of Technology Aachen52056 Germany
In this paper, three different voicing features are studied as additional acoustic features for continuous speech recognition. The harmonic product spectrum based feature is extracted in frequency domain while the aut... 详细信息
来源: 评论
Investigation of Transformer-based Latent Attention Models for Neural Machine Translation  14
Investigation of Transformer-based Latent Attention Models f...
收藏 引用
14th Conference of the Association for Machine Translation in the Americas, AMTA 2020
作者: Bahar, Parnia Makarov, Nikita Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
Current neural translation networks are based on an effective attention mechanism that can be considered as an implicit probabilistic notion of alignment. Such architectures do not guarantee a high quality alignment, ... 详细信息
来源: 评论
Cipher type detection
Cipher type detection
收藏 引用
2014 Conference on Empirical Methods in Natural language Processing, EMNLP 2014
作者: Nuhn, Malte Knight, Kevin Computer Science Department Human Language Technology and Pattern Recognition Group RWTH Aachen University Germany Information Sciences Institute University of Southern California United States
Manual analysis and decryption of enciphered documents is a tedious and error prone work. Often-even after spending large amounts of time on a particular cipher-no decipherment can be found. Automating the decryption ... 详细信息
来源: 评论