咨询与建议

限定检索结果

文献类型

  • 260 篇 会议
  • 94 篇 期刊文献

馆藏范围

  • 354 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 238 篇 工学
    • 174 篇 计算机科学与技术...
    • 160 篇 软件工程
    • 63 篇 信息与通信工程
    • 22 篇 机械工程
    • 18 篇 控制科学与工程
    • 12 篇 电子科学与技术(可...
    • 11 篇 电气工程
    • 9 篇 化学工程与技术
    • 8 篇 光学工程
    • 8 篇 生物工程
    • 6 篇 生物医学工程(可授...
    • 3 篇 仪器科学与技术
    • 2 篇 动力工程及工程热...
    • 1 篇 材料科学与工程(可...
    • 1 篇 农业工程
  • 151 篇 理学
    • 107 篇 物理学
    • 60 篇 数学
    • 32 篇 统计学(可授理学、...
    • 19 篇 系统科学
    • 10 篇 化学
    • 10 篇 生物学
    • 1 篇 地球物理学
  • 27 篇 管理学
    • 22 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
    • 3 篇 工商管理
  • 2 篇 法学
    • 2 篇 社会学
  • 2 篇 文学
    • 2 篇 外国语言文学
    • 1 篇 中国语言文学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学
    • 1 篇 作物学
  • 1 篇 医学
  • 1 篇 艺术学

主题

  • 68 篇 speech recogniti...
  • 41 篇 training
  • 38 篇 hidden markov mo...
  • 22 篇 neural machine t...
  • 20 篇 machine translat...
  • 19 篇 decoding
  • 18 篇 computer aided l...
  • 18 篇 handwriting reco...
  • 15 篇 feature extracti...
  • 15 篇 transducers
  • 15 篇 recurrent neural...
  • 14 篇 vocabulary
  • 13 篇 error analysis
  • 12 篇 databases
  • 10 篇 modeling languag...
  • 10 篇 speech
  • 10 篇 humans
  • 9 篇 training data
  • 9 篇 signal processin...
  • 9 篇 optimization

机构

  • 52 篇 human language t...
  • 40 篇 apptek gmbh aach...
  • 40 篇 human language t...
  • 32 篇 human language t...
  • 31 篇 human language t...
  • 26 篇 apptek gmbh aach...
  • 21 篇 human language t...
  • 16 篇 human language t...
  • 14 篇 apptek gmbh
  • 13 篇 human language t...
  • 10 篇 human language t...
  • 10 篇 machine learning...
  • 9 篇 spoken language ...
  • 9 篇 human language t...
  • 8 篇 computer science...
  • 8 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 5 篇 a2ia sa

作者

  • 220 篇 ney hermann
  • 85 篇 hermann ney
  • 70 篇 schlüter ralf
  • 26 篇 ralf schlüter
  • 21 篇 ralf schluter
  • 20 篇 wuebker joern
  • 19 篇 zhou wei
  • 18 篇 gao yingbo
  • 18 篇 zeyer albert
  • 14 篇 kim yunsu
  • 14 篇 herold christian
  • 14 篇 thulke david
  • 13 篇 mansour saab
  • 13 篇 zeineldeen moham...
  • 13 篇 patrick doetsch
  • 13 篇 peitz stephan
  • 13 篇 huck matthias
  • 12 篇 peter jan-thorst...
  • 12 篇 yang zijian
  • 12 篇 michel wilfried

语言

  • 349 篇 英文
  • 4 篇 其他
  • 1 篇 中文
检索条件"机构=Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen"
354 条 记 录,以下是131-140 订阅
排序:
The rwth aachen university Supervised Machine Translation Systems for WMT 2018  3
The RWTH Aachen University Supervised Machine Translation Sy...
收藏 引用
3rd Conference on Machine Translation, WMT 2018 at the Conference on Empirical Methods in Natural language Processing, EMNLP 2018
作者: Schamper, Julian Rosendahl, Jan Bahar, Parnia Kim, Yunsu Nix, Arne Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
This paper describes the statistical machine translation systems developed at rwth aachen university for the German→English, English→Turkish and Chinese→English translation tasks of the EMNLP 2018 Third Conference ... 详细信息
来源: 评论
The rwth aachen university Filtering System for the WMT 2018 Parallel Corpus Filtering Task  3
The RWTH Aachen University Filtering System for the WMT 2018...
收藏 引用
3rd Conference on Machine Translation, WMT 2018 at the Conference on Empirical Methods in Natural language Processing, EMNLP 2018
作者: Rossenbach, Nick Rosendahl, Jan Kim, Yunsu Graça, Miguel Gokrani, Aman Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
This paper describes the submission of rwth aachen university for the De→En parallel corpus filtering task of the EMNLP 2018 Third Conference on Machine Translation (WMT 2018). We use several rule-based, heuristic me... 详细信息
来源: 评论
On the Alignment Problem in Multi-Head Attention-Based Neural Machine Translation  3
On the Alignment Problem in Multi-Head Attention-Based Neura...
收藏 引用
3rd Conference on Machine Translation, WMT 2018 at the Conference on Empirical Methods in Natural language Processing, EMNLP 2018
作者: Alkhouli, Tamer Bretschner, Gabriel Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
This work investigates the alignment problem in state-of-the-art multi-head attention models based on the transformer architecture. We demonstrate that alignment extraction in transformer models can be improved by aug... 详细信息
来源: 评论
Investigation on estimation of sentence probability by combining forward, backward and Bi-directional LSTM-RNNs  19
Investigation on estimation of sentence probability by combi...
收藏 引用
19th Annual Conference of the International Speech Communication, INTERSPEECH 2018
作者: Irie, Kazuki Lei, Zhihong Deng, Liuhui Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
A combination of forward and backward long short-term memory (LSTM) recurrent neural network (RNN) language models is a popular model combination approach to improve the estimation of the sequence probability in the s... 详细信息
来源: 评论
On using 2D sequence-to-sequence models for speech recognition
arXiv
收藏 引用
arXiv 2019年
作者: Bahar, Parnia Zeyer, Albert Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany AppTek McLean United States
Attention-based sequence-to-sequence models have shown promising results in automatic speech recognition. Using these architectures, one-dimensional input and output sequences are related by an attention approach, the... 详细信息
来源: 评论
Cumulative adaptation for BLSTM acoustic models
arXiv
收藏 引用
arXiv 2019年
作者: Kitza, Markus Golik, Pavel Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
This paper addresses the robust speech recognition problem as an adaptation task. Specifically, we investigate the cumulative application of adaptation methods. A bidirectional Long Short-Term Memory (BLSTM) based neu... 详细信息
来源: 评论
Analysis of deep clustering as preprocessing for automatic speech recognition of sparsely overlapping speech
arXiv
收藏 引用
arXiv 2019年
作者: Menne, Tobias Sklyar, Ilya Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
Significant performance degradation of automatic speech recognition (ASR) systems is observed when the audio signal contains cross-talk. One of the recently proposed approaches to solve the problem of multi-speaker AS... 详细信息
来源: 评论
rwth ASR Systems for LibriSpeech: Hybrid vs Attention - w/o Data Augmentation
arXiv
收藏 引用
arXiv 2019年
作者: Lüscher, Christoph Beck, Eugen Irie, Kazuki Kitza, Markus Michel, Wilfried Zeyer, Albert Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
We present state-of-the-art automatic speech recognition (ASR) systems employing a standard hybrid DNN/HMM architecture compared to an attention-based encoder-decoder design for the LibriSpeech task. Detailed descript... 详细信息
来源: 评论
Generating synthetic audio data for attention-based speech recognition systems
arXiv
收藏 引用
arXiv 2019年
作者: Rossenbach, Nick Zeyer, Albert Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Germany AppTek GmbH 52074 Aachen Aachen52062 Germany
Recent advances in text-to-speech (TTS) led to the development of flexible multi-speaker end-to-end TTS systems. We extend state-of-the-art attention-based automatic speech recognition (ASR) systems with synthetic aud... 详细信息
来源: 评论
LSTM language models for LVCSR in first-pass decoding and lattice-rescoring
arXiv
收藏 引用
arXiv 2019年
作者: Beck, Eugen Zhou, Wei Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
LSTM based language models are an important part of modern LVCSR systems as they significantly improve performance over traditional backoff language models. Incorporating them efficiently into decoding has been notori... 详细信息
来源: 评论