咨询与建议

限定检索结果

文献类型

  • 260 篇 会议
  • 94 篇 期刊文献

馆藏范围

  • 354 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 238 篇 工学
    • 174 篇 计算机科学与技术...
    • 160 篇 软件工程
    • 63 篇 信息与通信工程
    • 22 篇 机械工程
    • 18 篇 控制科学与工程
    • 12 篇 电子科学与技术(可...
    • 11 篇 电气工程
    • 9 篇 化学工程与技术
    • 8 篇 光学工程
    • 8 篇 生物工程
    • 6 篇 生物医学工程(可授...
    • 3 篇 仪器科学与技术
    • 2 篇 动力工程及工程热...
    • 1 篇 材料科学与工程(可...
    • 1 篇 农业工程
  • 151 篇 理学
    • 107 篇 物理学
    • 60 篇 数学
    • 32 篇 统计学(可授理学、...
    • 19 篇 系统科学
    • 10 篇 化学
    • 10 篇 生物学
    • 1 篇 地球物理学
  • 27 篇 管理学
    • 22 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
    • 3 篇 工商管理
  • 2 篇 法学
    • 2 篇 社会学
  • 2 篇 文学
    • 2 篇 外国语言文学
    • 1 篇 中国语言文学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学
    • 1 篇 作物学
  • 1 篇 医学
  • 1 篇 艺术学

主题

  • 68 篇 speech recogniti...
  • 41 篇 training
  • 38 篇 hidden markov mo...
  • 22 篇 neural machine t...
  • 20 篇 machine translat...
  • 19 篇 decoding
  • 18 篇 computer aided l...
  • 18 篇 handwriting reco...
  • 15 篇 feature extracti...
  • 15 篇 transducers
  • 15 篇 recurrent neural...
  • 14 篇 vocabulary
  • 13 篇 error analysis
  • 12 篇 databases
  • 10 篇 modeling languag...
  • 10 篇 speech
  • 10 篇 humans
  • 9 篇 training data
  • 9 篇 signal processin...
  • 9 篇 optimization

机构

  • 52 篇 human language t...
  • 40 篇 apptek gmbh aach...
  • 40 篇 human language t...
  • 32 篇 human language t...
  • 31 篇 human language t...
  • 26 篇 apptek gmbh aach...
  • 21 篇 human language t...
  • 16 篇 human language t...
  • 14 篇 apptek gmbh
  • 13 篇 human language t...
  • 10 篇 human language t...
  • 10 篇 machine learning...
  • 9 篇 spoken language ...
  • 9 篇 human language t...
  • 8 篇 computer science...
  • 8 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 5 篇 a2ia sa

作者

  • 220 篇 ney hermann
  • 85 篇 hermann ney
  • 70 篇 schlüter ralf
  • 26 篇 ralf schlüter
  • 21 篇 ralf schluter
  • 20 篇 wuebker joern
  • 19 篇 zhou wei
  • 18 篇 gao yingbo
  • 18 篇 zeyer albert
  • 14 篇 kim yunsu
  • 14 篇 herold christian
  • 14 篇 thulke david
  • 13 篇 mansour saab
  • 13 篇 zeineldeen moham...
  • 13 篇 patrick doetsch
  • 13 篇 peitz stephan
  • 13 篇 huck matthias
  • 12 篇 peter jan-thorst...
  • 12 篇 yang zijian
  • 12 篇 michel wilfried

语言

  • 349 篇 英文
  • 4 篇 其他
  • 1 篇 中文
检索条件"机构=Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen"
354 条 记 录,以下是151-160 订阅
排序:
Prediction of LSTM-RNN Full Context States as a Subtask for N-Gram Feedforward language Models
Prediction of LSTM-RNN Full Context States as a Subtask for ...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Kazuki Irie Zhihong Lei Ralf Schlüter Hermann Ney Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University D-52056 Aachen Germany
Long short-term memory (LSTM) recurrent neural network language models compress the full context of variable lengths into a fixed size vector. In this work, we investigate the task of predicting the LSTM hidden repres... 详细信息
来源: 评论
Unsupervised training for large vocabulary translation using sparse lexicon andword classes  15
Unsupervised training for large vocabulary translation using...
收藏 引用
15th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2017
作者: Kim, Yunsu Schamper, Julian Ney, Hermann Human Language Technology and Pattern Recognition Group RWTH Aachen University Germany
We address for the first time unsupervised training for a translation task with hundreds of thousands of vocabulary words. We scale up the expectation-maximization (EM) algorithm to learn a large translation table wit... 详细信息
来源: 评论
The rwth aachen university English-German and German-English machine translation system for WMT 2017  2
The RWTH Aachen University English-German and German-English...
收藏 引用
2nd Conference on Machine Translation, WMT 2017
作者: Peter, Jan-Thorsten Guta, Andreas Alkhouli, Tamer Bahar, Parnia Rosendahl, Jan Rossenbach, Nick Graça, Miguel Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
This paper describes the statistical machine translation system developed at rwth aachen university for the English?German and German?English translation tasks of the EMNLP 2017 Second Conference on Machine Translatio... 详细信息
来源: 评论
Biasing attention-based recurrent neural networks using external alignment information  2
Biasing attention-based recurrent neural networks using exte...
收藏 引用
2nd Conference on Machine Translation, WMT 2017
作者: Alkhouli, Tamer Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
This work explores extending attention-based neural models to include alignment information as input. We modify the attention component to have dependence on the current source position. The attention model is then us... 详细信息
来源: 评论
Improved training of end-to-end attention models for speech recognition
arXiv
收藏 引用
arXiv 2018年
作者: Zeyer, Albert Irie, Kazuki Schlüter, Ralf Ney, Hermann Computer Science Department Rwth Aachen University Human Language Technology and Pattern Recognition Aachen52062 Germany AppTek United States Nnaisense Switzerland
Sequence-to-sequence attention-based models on subword units allow simple open-vocabulary end-to-end speech recognition. In this work, we show that such models can achieve competitive results on the Switchboard 300h a... 详细信息
来源: 评论
Returnn: The rwth extensible training framework for universal recurrent neural networks
Returnn: The RWTH extensible training framework for universa...
收藏 引用
2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017
作者: Doetsch, Patrick Zeyer, Albert Voigtlaender, Paul Kulikov, Ilia Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52062 Germany
In this work we release our extensible and easily configurable neural network training software. It provides a rich set of functional layers with a particular focus on efficient training of recurrent neural network to... 详细信息
来源: 评论
RADMM: RECURRENT ADAPTIVE MIXTURE MODEL WITH APPLICATIONS TO DOMAIN ROBUST language MODELING
RADMM: RECURRENT ADAPTIVE MIXTURE MODEL WITH APPLICATIONS TO...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Kazuki Irie Shankar Kumar Michael Nirschl Hank Liao Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University D-52056 Aachen Germany Google Inc. New York NY 10011 USA
We present a new architecture and a training strategy for an adaptive mixture of experts with applications to domain robust language modeling. The proposed model is designed to benefit from the scenario where the trai... 详细信息
来源: 评论
MLLP-UPV and rwth aachen Spanish ASR Systems for the IberSpeech-RTVE 2018 Speech-to-Text Transcription Challenge  4
MLLP-UPV and RWTH Aachen Spanish ASR Systems for the IberSpe...
收藏 引用
4th International Conference on Advances in Speech and language Technologies for Iberian languages, IberSPEECH 2018
作者: Jorge, Javier Martínez-Villaronga, Adrià Golik, Pavel Giménez, Adrià Silvestre-Cerdà, Joan Albert Doetsch, Patrick Císcar, Vicent Andreu Ney, Hermann Juan, Alfons Sanchis, Albert Departament de Sistemes Informàtics i Computació Universitat Politècnica de València Spain Human Language Technology and Pattern Recognition RWTH Aachen University Germany Escola Tècnica Superior d'Enginyeria Informàtica Universitat Politècnica de València Spain
This paper describes the Automatic Speech recognition systems built by the MLLP research group of Universitat Politècnica de València and the HLTPR research group of rwth aachen for the IberSpeech-RTVE 2018 ... 详细信息
来源: 评论
Local system voting feature for machine translation system combination
arXiv
收藏 引用
arXiv 2017年
作者: Freitag, Markus Peter, Jan-Thorsten Peitz, Stephan Feng, Minwei Ney, Hermann Human Language Technology Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
In this paper, we enhance the traditional confusion network system combination approach with an additional model trained by a neural network. This work is motivated by the fact that the commonly used binary system vot... 详细信息
来源: 评论
Investigations on byte-level convolutional neural networks for language modeling in low resource speech recognition
Investigations on byte-level convolutional neural networks f...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Kazuki Irie Pavel Golik Ralf Schluter Hermann Ney Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Germany
In this paper, we present an investigation on technical details of the byte-level convolutional layer which replaces the conventional linear word projection layer in the neural language model. In particular, we discus... 详细信息
来源: 评论