咨询与建议

限定检索结果

文献类型

  • 260 篇 会议
  • 94 篇 期刊文献

馆藏范围

  • 354 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 238 篇 工学
    • 174 篇 计算机科学与技术...
    • 160 篇 软件工程
    • 63 篇 信息与通信工程
    • 22 篇 机械工程
    • 18 篇 控制科学与工程
    • 12 篇 电子科学与技术(可...
    • 11 篇 电气工程
    • 9 篇 化学工程与技术
    • 8 篇 光学工程
    • 8 篇 生物工程
    • 6 篇 生物医学工程(可授...
    • 3 篇 仪器科学与技术
    • 2 篇 动力工程及工程热...
    • 1 篇 材料科学与工程(可...
    • 1 篇 农业工程
  • 151 篇 理学
    • 107 篇 物理学
    • 60 篇 数学
    • 32 篇 统计学(可授理学、...
    • 19 篇 系统科学
    • 10 篇 化学
    • 10 篇 生物学
    • 1 篇 地球物理学
  • 27 篇 管理学
    • 22 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
    • 3 篇 工商管理
  • 2 篇 法学
    • 2 篇 社会学
  • 2 篇 文学
    • 2 篇 外国语言文学
    • 1 篇 中国语言文学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学
    • 1 篇 作物学
  • 1 篇 医学
  • 1 篇 艺术学

主题

  • 68 篇 speech recogniti...
  • 41 篇 training
  • 38 篇 hidden markov mo...
  • 22 篇 neural machine t...
  • 20 篇 machine translat...
  • 19 篇 decoding
  • 18 篇 computer aided l...
  • 18 篇 handwriting reco...
  • 15 篇 feature extracti...
  • 15 篇 transducers
  • 15 篇 recurrent neural...
  • 14 篇 vocabulary
  • 13 篇 error analysis
  • 12 篇 databases
  • 10 篇 modeling languag...
  • 10 篇 speech
  • 10 篇 humans
  • 10 篇 automatic speech...
  • 9 篇 training data
  • 9 篇 signal processin...

机构

  • 52 篇 human language t...
  • 40 篇 human language t...
  • 39 篇 apptek gmbh aach...
  • 32 篇 human language t...
  • 31 篇 human language t...
  • 26 篇 apptek gmbh aach...
  • 21 篇 human language t...
  • 16 篇 human language t...
  • 15 篇 apptek gmbh
  • 13 篇 human language t...
  • 11 篇 machine learning...
  • 10 篇 human language t...
  • 9 篇 spoken language ...
  • 9 篇 human language t...
  • 8 篇 computer science...
  • 8 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 5 篇 a2ia sa

作者

  • 220 篇 ney hermann
  • 85 篇 hermann ney
  • 70 篇 schlüter ralf
  • 26 篇 ralf schlüter
  • 21 篇 ralf schluter
  • 20 篇 wuebker joern
  • 19 篇 zhou wei
  • 18 篇 gao yingbo
  • 18 篇 zeyer albert
  • 14 篇 kim yunsu
  • 14 篇 herold christian
  • 14 篇 thulke david
  • 13 篇 mansour saab
  • 13 篇 zeineldeen moham...
  • 13 篇 patrick doetsch
  • 13 篇 peitz stephan
  • 13 篇 huck matthias
  • 12 篇 peter jan-thorst...
  • 12 篇 yang zijian
  • 12 篇 michel wilfried

语言

  • 346 篇 英文
  • 7 篇 其他
  • 1 篇 中文
检索条件"机构=Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen"
354 条 记 录,以下是271-280 订阅
排序:
A convergence analysis of log-linear training and its application to speech recognition
A convergence analysis of log-linear training and its applic...
收藏 引用
2011 IEEE Workshop on Automatic Speech recognition and Understanding, ASRU 2011
作者: Wiesler, S. Schluter, R. Ney, H. Human Language Technology and Pattern Recognition RWTH Aachen University of Technology 52056 Aachen Germany
Log-linear models are a promising approach for speech recognition. Typically, log-linear models are trained according to a strictly convex criterion. Optimization algorithms are guaranteed to converge to the unique gl... 详细信息
来源: 评论
Modeling Punctuation Prediction as Machine Translation  8
Modeling Punctuation Prediction as Machine Translation
收藏 引用
8th International Workshop on Spoken language Translation, IWSLT 2011
作者: Peitz, Stephan Freitag, Markus Mauser, Arne Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
Punctuation prediction is an important task in Spoken language Translation. The output of speech recognition systems does not typically contain punctuation marks. In this paper we analyze different methods for punctua... 详细信息
来源: 评论
Combining Translation and language Model Scoring for Domain-Specific Data Filtering  8
Combining Translation and Language Model Scoring for Domain-...
收藏 引用
8th International Workshop on Spoken language Translation, IWSLT 2011
作者: Mansour, Saab Wuebker, Joern Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
The increasing popularity of statistical machine translation (SMT) systems is introducing new domains of translation that need to be tackled. As many resources are already available, domain adaptation methods can be a... 详细信息
来源: 评论
Using morpheme and syllable based sub-words for polish LVCSR
Using morpheme and syllable based sub-words for polish LVCSR
收藏 引用
36th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2011
作者: Shaik, M. Ali Basha El-Desoky Mousa, Amr Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition - Computer Science Department RWTH Aachen University 52056 Aachen Germany
Polish is a synthetic language with a high morpheme-per-word ratio. It makes use of a high degree of inflection leading to high out-of-vocabulary (OOV) rates, and high language Model (LM) perplexities. This poses a ch... 详细信息
来源: 评论
Hybrid language models using mixed types of sub-lexical units for open vocabulary German LVCSR
Hybrid language models using mixed types of sub-lexical unit...
收藏 引用
12th Annual Conference of the International Speech Communication Association, INTERSPEECH 2011
作者: Ali Basha Shaik, M. El-Desoky Mousa, Amr Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University 52056 Aachen Germany
German is a highly inflected language with a large number of words derived from the same root. It makes use of a high degree of word compounding leading to high Out-of-vocabulary (OOV) rates, and language Model (LM) p... 详细信息
来源: 评论
Soft String-to-Dependency Hierarchical Machine Translation  8
Soft String-to-Dependency Hierarchical Machine Translation
收藏 引用
8th International Workshop on Spoken language Translation, IWSLT 2011
作者: Peter, Jan-Thorsten Huck, Matthias Ney, Hermann Stein, Daniel Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen Germany Fraunhofer IAIS St. Augustin Germany
In this paper, we dissect the influence of several target-side dependency-based extensions to hierarchical machine translation, including a dependency language model (LM). We pursue a non-restrictive approach that doe... 详细信息
来源: 评论
Morpheme based Factored language Models for German LVCSR
Morpheme based Factored Language Models for German LVCSR
收藏 引用
12th Annual Conference of the International Speech Communication Association, INTERSPEECH 2011
作者: El-Desoky Mousa, Amr Ali Basha Shaik, M. Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University 52056 Aachen Germany
German is a highly inflectional language, where a large number of words can be generated from the same root. It makes a liberal use of compounding leading to high Out-of-vocabulary (OOV) rates, and poor language Model... 详细信息
来源: 评论
Lightly-Supervised Training for Hierarchical Phrase-Based Machine Translation  1
Lightly-Supervised Training for Hierarchical Phrase-Based Ma...
收藏 引用
1st Workshop on Unsupervised Learning in NLP at the 2011 Conference on Empirical Methods in Natural language Processing, EMNLP 2011
作者: Huck, Matthias Vilar, David Stein, Daniel Ney, Hermann Human Language Technology and Pattern Recognition Group RWTH Aachen University Germany DFKI GmbH Berlin Germany
In this paper we apply lightly-supervised training to a hierarchical phrase-based statistical machine translation system. We employ bitexts that have been built by automatically translating large amounts of monolingua... 详细信息
来源: 评论
Advancements in Arabic-to-English hierarchical machine translation
Advancements in Arabic-to-English hierarchical machine trans...
收藏 引用
15th International Conference of the European Association for Machine Translation, EAMT 2011
作者: Huck, Matthias Vilar, David Stein, Daniel Ney, Hermann Human Language Technology and Pattern Recognition Group RWTH Aachen University Germany DFKI GmbH Berlin Germany
In this paper we study several advanced techniques and models for Arabic-to-English statistical machine translation. We examine how the challenges imposed by this particular language pair and translation direction can... 详细信息
来源: 评论
The rwth 2010 Quaero ASR evaluation system for English, French, and German
The RWTH 2010 Quaero ASR evaluation system for English, Fren...
收藏 引用
36th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2011
作者: Sundermeyer, M. Nussbaum-Thom, M. Wiesler, S. Plahl, C. El-Desoky Mousa, A. Hahn, S. Nolden, D. Schlüter, R. Ney, H. Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Germany
Recognizing Broadcast Conversational (BC) speech data is a difficult task, which can be regarded as one of the major challenges beyond the recognition of Broadcast News (BN). © 2011 IEEE.
来源: 评论