咨询与建议

限定检索结果

文献类型

  • 260 篇 会议
  • 94 篇 期刊文献

馆藏范围

  • 354 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 238 篇 工学
    • 174 篇 计算机科学与技术...
    • 160 篇 软件工程
    • 63 篇 信息与通信工程
    • 22 篇 机械工程
    • 18 篇 控制科学与工程
    • 12 篇 电子科学与技术(可...
    • 11 篇 电气工程
    • 9 篇 化学工程与技术
    • 8 篇 光学工程
    • 8 篇 生物工程
    • 6 篇 生物医学工程(可授...
    • 3 篇 仪器科学与技术
    • 2 篇 动力工程及工程热...
    • 1 篇 材料科学与工程(可...
    • 1 篇 农业工程
  • 151 篇 理学
    • 107 篇 物理学
    • 60 篇 数学
    • 32 篇 统计学(可授理学、...
    • 19 篇 系统科学
    • 10 篇 化学
    • 10 篇 生物学
    • 1 篇 地球物理学
  • 27 篇 管理学
    • 22 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
    • 3 篇 工商管理
  • 2 篇 法学
    • 2 篇 社会学
  • 2 篇 文学
    • 2 篇 外国语言文学
    • 1 篇 中国语言文学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学
    • 1 篇 作物学
  • 1 篇 医学
  • 1 篇 艺术学

主题

  • 68 篇 speech recogniti...
  • 41 篇 training
  • 38 篇 hidden markov mo...
  • 22 篇 neural machine t...
  • 20 篇 machine translat...
  • 19 篇 decoding
  • 18 篇 computer aided l...
  • 18 篇 handwriting reco...
  • 15 篇 feature extracti...
  • 15 篇 transducers
  • 15 篇 recurrent neural...
  • 14 篇 vocabulary
  • 13 篇 error analysis
  • 12 篇 databases
  • 10 篇 modeling languag...
  • 10 篇 speech
  • 10 篇 humans
  • 9 篇 training data
  • 9 篇 signal processin...
  • 9 篇 optimization

机构

  • 52 篇 human language t...
  • 40 篇 apptek gmbh aach...
  • 40 篇 human language t...
  • 32 篇 human language t...
  • 31 篇 human language t...
  • 26 篇 apptek gmbh aach...
  • 21 篇 human language t...
  • 16 篇 human language t...
  • 14 篇 apptek gmbh
  • 13 篇 human language t...
  • 10 篇 human language t...
  • 10 篇 machine learning...
  • 9 篇 spoken language ...
  • 9 篇 human language t...
  • 8 篇 computer science...
  • 8 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 5 篇 a2ia sa

作者

  • 220 篇 ney hermann
  • 85 篇 hermann ney
  • 70 篇 schlüter ralf
  • 26 篇 ralf schlüter
  • 21 篇 ralf schluter
  • 20 篇 wuebker joern
  • 19 篇 zhou wei
  • 18 篇 gao yingbo
  • 18 篇 zeyer albert
  • 14 篇 kim yunsu
  • 14 篇 herold christian
  • 14 篇 thulke david
  • 13 篇 mansour saab
  • 13 篇 zeineldeen moham...
  • 13 篇 patrick doetsch
  • 13 篇 peitz stephan
  • 13 篇 huck matthias
  • 12 篇 peter jan-thorst...
  • 12 篇 yang zijian
  • 12 篇 michel wilfried

语言

  • 349 篇 英文
  • 4 篇 其他
  • 1 篇 中文
检索条件"机构=Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen"
354 条 记 录,以下是21-30 订阅
排序:
Lattice-Free Sequence Discriminative Training for Phoneme-Based Neural Transducers
Lattice-Free Sequence Discriminative Training for Phoneme-Ba...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Zijian Yang Wei Zhou Ralf Schlüter Hermann Ney Computer Science Department Human Language Technology and Pattern Recognition RWTH Aachen University Aachen Germany AppTek GmbH Aachen Germany
Recently, RNN-Transducers have achieved remarkable results on various automatic speech recognition tasks. However, lattice-free sequence discriminative training methods, which obtain superior performance in hybrid mod... 详细信息
来源: 评论
Enhancing and Adversarial: Improve ASR with Speaker Labels
Enhancing and Adversarial: Improve ASR with Speaker Labels
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Wei Zhou Haotian Wu Jingjing Xu Mohammad Zeineldeen Christoph Lüscher Ralf Schlüter Hermann Ney Computer Science Department Human Language Technology and Pattern Recognition RWTH Aachen University Aachen Germany AppTek GmbH Aachen Germany
ASR can be improved by multi-task learning (MTL) with domain enhancing or domain adversarial training, which are two opposite objectives with the aim to increase/decrease domain variance towards domain-aware/agnostic ... 详细信息
来源: 评论
Towards a Better Evaluation of Metrics for Machine Translation  5
Towards a Better Evaluation of Metrics for Machine Translati...
收藏 引用
5th Conference on Machine Translation, WMT 2020
作者: Stanchev, Peter Wang, Weiyue Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52056 Germany
An important aspect of machine translation is its evaluation, which can be achieved through the use of a variety of metrics. To compare these metrics, the workshop on statistical machine translation annually evaluates... 详细信息
来源: 评论
Prompting and Fine-Tuning of Small LLMs for Length-Controllable Telephone Call Summarization
Prompting and Fine-Tuning of Small LLMs for Length-Controlla...
收藏 引用
Foundation and Large language Models (FLLM), International Conference on
作者: David Thulke Yingbo Gao Rricha Jalota Christian Dugast Hermann Ney AppTek GmbH Aachen Machine Learning and Human Language Technology Group RWTH Aachen University
This paper explores the rapid development of a telephone call summarization system utilizing large language models (LLMs). Our approach involves initial experiments with prompting existing LLMs to generate summaries o... 详细信息
来源: 评论
Controllable Factuality in Document-Grounded Dialog Systems Using a Noisy Channel Model
Controllable Factuality in Document-Grounded Dialog Systems ...
收藏 引用
2022 Findings of the Association for Computational Linguistics: EMNLP 2022
作者: Daheim, Nico Thulke, David Dugast, Christian Ney, Hermann Ubiquitous Knowledge Processing Lab Department of Computer Science Technical University of Darmstadt Germany Human Language Technology and Pattern Recognition RWTH Aachen University Germany AppTek GmbH
In this work, we present a model for document-grounded response generation in dialog that is decomposed into two components according to Bayes' theorem. One component is a traditional ungrounded response generatio... 详细信息
来源: 评论
Robust Knowledge Distillation from RNN-T Models with Noisy Training Labels Using Full-Sum Loss
Robust Knowledge Distillation from RNN-T Models with Noisy T...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Mohammad Zeineldeen Kartik Audhkhasi Murali Karthick Baskar Bhuvana Ramabhadran Computer Science Department Human Language Technology and Pattern Recognition RWTH Aachen University Aachen Germany Google LLC New York
This work studies knowledge distillation (KD) and addresses its constraints for recurrent neural network transducer (RNN-T) models. In hard distillation, a teacher model transcribes large amounts of unlabelled speech ... 详细信息
来源: 评论
ON THE RELATION BETWEEN INTERNAL language MODEL AND SEQUENCE DISCRIMINATIVE TRAINING FOR NEURAL TRANSDUCERS
arXiv
收藏 引用
arXiv 2023年
作者: Yang, Zijian Zhou, Wei Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
Internal language model (ILM) subtraction has been widely applied to improve the performance of the RNN-Transducer with external language model (LM) fusion for speech recognition. In this work, we show that sequence d... 详细信息
来源: 评论
HMM VS. CTC FOR AUTOMATIC SPEECH recognition: COMPARISON BASED ON FULL-SUM TRAINING FROM SCRATCH
arXiv
收藏 引用
arXiv 2022年
作者: Raissi, Tina Zhou, Wei Berger, Simon Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Group Rwth Aachen University Germany AppTek GmbH Aachen Germany
In this work, we compare from-scratch sequence-level cross-entropy (full-sum) training of Hidden Markov Model (HMM) and Connectionist Temporal Classification (CTC) topologies for automatic speech recognition (ASR). Be... 详细信息
来源: 评论
IMPROVING FACTORED HYBRID HMM ACOUSTIC MODELING WITHOUT STATE TYING
arXiv
收藏 引用
arXiv 2022年
作者: Raissi, Tina Beck, Eugen Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Group RWTH Aachen University Germany AppTek GmbH Aachen Germany
In this work, we show that a factored hybrid hidden Markov model (FH-HMM) which is defined without any phonetic state-tying outperforms a state-of-the-art hybrid HMM. The factored hybrid HMM provides a link to transdu... 详细信息
来源: 评论
Prompting and Fine-Tuning of Small LLMs for Length-Controllable Telephone Call Summarization
arXiv
收藏 引用
arXiv 2024年
作者: Thulke, David Gao, Yingbo Jalota, Rricha Dugast, Christian Ney, Hermann AppTek GmbH Aachen Germany Machine Learning and Human Language Technology Group RWTH Aachen University Germany
This paper explores the rapid development of a telephone call summarization system utilizing large language models (LLMs). Our approach involves initial experiments with prompting existing LLMs to generate summaries o... 详细信息
来源: 评论