咨询与建议

限定检索结果

文献类型

  • 260 篇 会议
  • 94 篇 期刊文献

馆藏范围

  • 354 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 238 篇 工学
    • 174 篇 计算机科学与技术...
    • 160 篇 软件工程
    • 63 篇 信息与通信工程
    • 22 篇 机械工程
    • 18 篇 控制科学与工程
    • 12 篇 电子科学与技术(可...
    • 11 篇 电气工程
    • 9 篇 化学工程与技术
    • 8 篇 光学工程
    • 8 篇 生物工程
    • 6 篇 生物医学工程(可授...
    • 3 篇 仪器科学与技术
    • 2 篇 动力工程及工程热...
    • 1 篇 材料科学与工程(可...
    • 1 篇 农业工程
  • 151 篇 理学
    • 107 篇 物理学
    • 60 篇 数学
    • 32 篇 统计学(可授理学、...
    • 19 篇 系统科学
    • 10 篇 化学
    • 10 篇 生物学
    • 1 篇 地球物理学
  • 27 篇 管理学
    • 22 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
    • 3 篇 工商管理
  • 2 篇 法学
    • 2 篇 社会学
  • 2 篇 文学
    • 2 篇 外国语言文学
    • 1 篇 中国语言文学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学
    • 1 篇 作物学
  • 1 篇 医学
  • 1 篇 艺术学

主题

  • 68 篇 speech recogniti...
  • 41 篇 training
  • 38 篇 hidden markov mo...
  • 22 篇 neural machine t...
  • 20 篇 machine translat...
  • 19 篇 decoding
  • 18 篇 computer aided l...
  • 18 篇 handwriting reco...
  • 15 篇 feature extracti...
  • 15 篇 transducers
  • 15 篇 recurrent neural...
  • 14 篇 vocabulary
  • 13 篇 error analysis
  • 12 篇 databases
  • 10 篇 modeling languag...
  • 10 篇 speech
  • 10 篇 humans
  • 9 篇 training data
  • 9 篇 signal processin...
  • 9 篇 optimization

机构

  • 52 篇 human language t...
  • 40 篇 apptek gmbh aach...
  • 40 篇 human language t...
  • 32 篇 human language t...
  • 31 篇 human language t...
  • 26 篇 apptek gmbh aach...
  • 21 篇 human language t...
  • 16 篇 human language t...
  • 14 篇 apptek gmbh
  • 13 篇 human language t...
  • 10 篇 human language t...
  • 10 篇 machine learning...
  • 9 篇 spoken language ...
  • 9 篇 human language t...
  • 8 篇 computer science...
  • 8 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 5 篇 a2ia sa

作者

  • 220 篇 ney hermann
  • 85 篇 hermann ney
  • 70 篇 schlüter ralf
  • 26 篇 ralf schlüter
  • 21 篇 ralf schluter
  • 20 篇 wuebker joern
  • 19 篇 zhou wei
  • 18 篇 gao yingbo
  • 18 篇 zeyer albert
  • 14 篇 kim yunsu
  • 14 篇 herold christian
  • 14 篇 thulke david
  • 13 篇 mansour saab
  • 13 篇 zeineldeen moham...
  • 13 篇 patrick doetsch
  • 13 篇 peitz stephan
  • 13 篇 huck matthias
  • 12 篇 peter jan-thorst...
  • 12 篇 yang zijian
  • 12 篇 michel wilfried

语言

  • 349 篇 英文
  • 4 篇 其他
  • 1 篇 中文
检索条件"机构=Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen"
354 条 记 录,以下是31-40 订阅
排序:
Right Label Context in End-to-End Training of Time-Synchronous ASR Models
Right Label Context in End-to-End Training of Time-Synchrono...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Tina Raissi Ralf Schlüter Hermann Ney Machine Learning and Human Language Technology Group RWTH Aachen University AppTek GmbH Germany
Current time-synchronous sequence-to-sequence automatic speech recognition (ASR) models are trained by using sequence level cross-entropy that sums over all alignments. Due to the discriminative formulation, incorpora... 详细信息
来源: 评论
Investigation on data adaptation techniques for neural named entity recognition  59
Investigation on data adaptation techniques for neural named...
收藏 引用
2021 Student Research Workshop, SRW 2021 at the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural language Processing, ACL-IJCNLP 2021
作者: Tokarchuk, Evgeniia Thulke, David Wang, Weiyue Dugast, Christian Ney, Hermann Informatics Institute University of Amsterdam Netherlands Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University Germany
Data processing is an important step in various natural language processing tasks. As the commonly used datasets in named entity recognition contain only a limited number of samples, it is important to obtain addition... 详细信息
来源: 评论
Efficient Supernet Training with Orthogonal Softmax for Scalable ASR Model Compression
arXiv
收藏 引用
arXiv 2025年
作者: Xu, Jingjing Beck, Eugen Yang, Zijian Schlüter, Ralf Machine Learning and Human Language Technology Group RWTH Aachen University Germany AppTek GmbH Germany
ASR systems are deployed across diverse environments, each with specific hardware constraints. We use supernet training to jointly train multiple encoders of varying sizes, enabling dynamic model size adjustment to fi... 详细信息
来源: 评论
Right Label Context in End-to-End Training of Time-Synchronous ASR Models
arXiv
收藏 引用
arXiv 2025年
作者: Raissi, Tina Schlüter, Ralf Ney, Hermann Machine Learning and Human Language Technology Group RWTH Aachen University Germany AppTek GmbH Germany
Current time-synchronous sequence-to-sequence automatic speech recognition (ASR) models are trained by using sequence level cross-entropy that sums over all alignments. Due to the discriminative formulation, incorpora... 详细信息
来源: 评论
Efficient Supernet Training with Orthogonal Softmax for Scalable ASR Model Compression
Efficient Supernet Training with Orthogonal Softmax for Scal...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Jingjing Xu Eugen Beck Zijian Yang Ralf Schlüter Machine Learning and Human Language Technology Group RWTH Aachen University Germany AppTek GmbH Germany
ASR systems are deployed across diverse environments, each with specific hardware constraints. We use supernet training to jointly train multiple encoders of varying sizes, enabling dynamic model size adjustment to fi... 详细信息
来源: 评论
Does Joint Training Really Help Cascaded Speech Translation?
arXiv
收藏 引用
arXiv 2022年
作者: Tran, Viet Anh Khoa Thulke, David Gao, Yingbo Herold, Christian Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
Currently, in speech translation, the straightforward approach - cascading a recognition system with a translation system - delivers state-of-the-art results. However, fundamental challenges such as error propagation ... 详细信息
来源: 评论
ROBUST KNOWLEDGE DISTILLATION FROM RNN-T MODELS WITH NOISY TRAINING LABELS USING FULL-SUM LOSS
arXiv
收藏 引用
arXiv 2023年
作者: Zeineldeen, Mohammad Audhkhasi, Kartik Baskar, Murali Karthick Ramabhadran, Bhuvana Human Language Technology and Pattern Recognition Computer Science Department Rwth Aachen University Aachen52074 Germany Google Llc New York United States
This work studies knowledge distillation (KD) and addresses its constraints for recurrent neural network transducer (RNNT) models. In hard distillation, a teacher model transcribes large amounts of unlabelled speech t... 详细信息
来源: 评论
Revisiting Checkpoint Averaging for Neural Machine Translation
arXiv
收藏 引用
arXiv 2022年
作者: Gao, Yingbo Herold, Christian Yang, Zijian Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University Germany
Checkpoint averaging is a simple and effective method to boost the performance of converged neural machine translation models. The calculation is cheap to perform and the fact that the translation improvement almost c... 详细信息
来源: 评论
Is Encoder-Decoder Redundant for Neural Machine Translation?
arXiv
收藏 引用
arXiv 2022年
作者: Gao, Yingbo Herold, Christian Yang, Zijian Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
Encoder-decoder architecture is widely adopted for sequence-to-sequence modeling tasks. For machine translation, despite the evolution from long short-term memory networks to Transformer networks, plus the introductio... 详细信息
来源: 评论
Investigating the Effect of Label Topology and Training Criterion on ASR Performance and Alignment Quality
arXiv
收藏 引用
arXiv 2024年
作者: Raissi, Tina Lüscher, Christoph Berger, Simon Schlüter, Ralf Ney, Hermann Machine Learning and Human Language Technology Group RWTH Aachen University Germany AppTek GmbH Germany
The ongoing research scenario for automatic speech recognition (ASR) envisions a clear division between end-to-end approaches and classic modular systems. Even though a high-level comparison between the two approaches... 详细信息
来源: 评论