咨询与建议

限定检索结果

文献类型

  • 260 篇 会议
  • 94 篇 期刊文献

馆藏范围

  • 354 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 238 篇 工学
    • 174 篇 计算机科学与技术...
    • 160 篇 软件工程
    • 63 篇 信息与通信工程
    • 22 篇 机械工程
    • 18 篇 控制科学与工程
    • 12 篇 电子科学与技术(可...
    • 11 篇 电气工程
    • 9 篇 化学工程与技术
    • 8 篇 光学工程
    • 8 篇 生物工程
    • 6 篇 生物医学工程(可授...
    • 3 篇 仪器科学与技术
    • 2 篇 动力工程及工程热...
    • 1 篇 材料科学与工程(可...
    • 1 篇 农业工程
  • 151 篇 理学
    • 107 篇 物理学
    • 60 篇 数学
    • 32 篇 统计学(可授理学、...
    • 19 篇 系统科学
    • 10 篇 化学
    • 10 篇 生物学
    • 1 篇 地球物理学
  • 27 篇 管理学
    • 22 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
    • 3 篇 工商管理
  • 2 篇 法学
    • 2 篇 社会学
  • 2 篇 文学
    • 2 篇 外国语言文学
    • 1 篇 中国语言文学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学
    • 1 篇 作物学
  • 1 篇 医学
  • 1 篇 艺术学

主题

  • 68 篇 speech recogniti...
  • 41 篇 training
  • 38 篇 hidden markov mo...
  • 22 篇 neural machine t...
  • 20 篇 machine translat...
  • 19 篇 decoding
  • 18 篇 computer aided l...
  • 18 篇 handwriting reco...
  • 15 篇 feature extracti...
  • 15 篇 transducers
  • 15 篇 recurrent neural...
  • 14 篇 vocabulary
  • 13 篇 error analysis
  • 12 篇 databases
  • 10 篇 modeling languag...
  • 10 篇 speech
  • 10 篇 humans
  • 9 篇 training data
  • 9 篇 signal processin...
  • 9 篇 optimization

机构

  • 52 篇 human language t...
  • 40 篇 apptek gmbh aach...
  • 40 篇 human language t...
  • 32 篇 human language t...
  • 31 篇 human language t...
  • 26 篇 apptek gmbh aach...
  • 21 篇 human language t...
  • 16 篇 human language t...
  • 14 篇 apptek gmbh
  • 13 篇 human language t...
  • 10 篇 human language t...
  • 10 篇 machine learning...
  • 9 篇 spoken language ...
  • 9 篇 human language t...
  • 8 篇 computer science...
  • 8 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 5 篇 a2ia sa

作者

  • 220 篇 ney hermann
  • 85 篇 hermann ney
  • 70 篇 schlüter ralf
  • 26 篇 ralf schlüter
  • 21 篇 ralf schluter
  • 20 篇 wuebker joern
  • 19 篇 zhou wei
  • 18 篇 gao yingbo
  • 18 篇 zeyer albert
  • 14 篇 kim yunsu
  • 14 篇 herold christian
  • 14 篇 thulke david
  • 13 篇 mansour saab
  • 13 篇 zeineldeen moham...
  • 13 篇 patrick doetsch
  • 13 篇 peitz stephan
  • 13 篇 huck matthias
  • 12 篇 peter jan-thorst...
  • 12 篇 yang zijian
  • 12 篇 michel wilfried

语言

  • 349 篇 英文
  • 4 篇 其他
  • 1 篇 中文
检索条件"机构=Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen"
354 条 记 录,以下是41-50 订阅
排序:
Efficient Utilization of Large Pre-Trained Models for Low Resource ASR
arXiv
收藏 引用
arXiv 2022年
作者: Vieting, Peter Lüscher, Christoph Dierkes, Julian Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
Unsupervised representation learning has recently helped automatic speech recognition (ASR) to tackle tasks with limited labeled data. Following this, hardware limitations and applications give rise to the question ho... 详细信息
来源: 评论
When and Why is Unsupervised Neural Machine Translation Useless?  22
When and Why is Unsupervised Neural Machine Translation Usel...
收藏 引用
22nd Annual Conference of the European Association for Machine Translation, EAMT 2020
作者: Kim, Yunsu Graça, Miguel Ney, Hermann Human Language Technology and Pattern Recognition Group Rwth Aachen University Aachen Germany
This paper studies the practicality of the current state-of-the-art unsupervised methods in neural machine translation (NMT). In ten translation tasks with various data settings, we analyze the conditions under which ... 详细信息
来源: 评论
Dynamic Encoder Size Based on Data-Driven Layer-wise Pruning for Speech recognition
arXiv
收藏 引用
arXiv 2024年
作者: Xu, Jingjing Zhou, Wei Yang, Zijian Beck, Eugen Schlüter, Ralf Machine Learning and Human Language Technology Group Computer Science Dept. RWTH Aachen University Germany AppTek GmbH Aachen52062 Germany
Varying-size models are often required to deploy ASR systems under different hardware and/or application constraints such as memory and latency. To avoid redundant training and optimization efforts for individual mode...
来源: 评论
Efficient Training of Neural Transducer for Speech recognition
arXiv
收藏 引用
arXiv 2022年
作者: Zhou, Wei Michel, Wilfried Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
As one of the most popular sequence-to-sequence modeling approaches for speech recognition, the RNN-Transducer has achieved evolving performance with more and more sophisticated neural network models of growing size a... 详细信息
来源: 评论
Sample drop detection for asynchronous devices distributed in space  28
Sample drop detection for asynchronous devices distributed i...
收藏 引用
28th European Signal Processing Conference, EUSIPCO 2020
作者: Raissi, Tina Pascual, Santiago Omologo, Maurizio Human Language Technology and Pattern Recognition RWTH Aachen University Aachen Germany Universitat Politècnica de Catalunya Barcelona Spain Trento Italy Dolby Laboratories Barcelona Spain
In many applications of multi-microphone multi-device processing, the synchronization among different input channels can be affected by the lack of a common clock and isolated drops of samples. In this work, we addres... 详细信息
来源: 评论
MONOTONIC SEGMENTAL ATTENTION FOR AUTOMATIC SPEECH recognition
arXiv
收藏 引用
arXiv 2022年
作者: Zeyer, Albert Schmitt, Robin Zhou, Wei Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52062 Germany AppTek GmbH Aachen52062 Germany
We introduce a novel segmental-attention model for automatic speech recognition. We restrict the decoder attention to segments to avoid quadratic runtime of global attention, better generalize to long sequences, and e... 详细信息
来源: 评论
LATTICE-FREE SEQUENCE DISCRIMINATIVE TRAINING FOR PHONEME-BASED NEURAL TRANSDUCERS
arXiv
收藏 引用
arXiv 2022年
作者: Yang, Zijian Zhou, Wei Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
Recently, RNN-Transducers have achieved remarkable results on various automatic speech recognition tasks. However, lattice-free sequence discriminative training methods, which obtain superior performance in hybrid mod... 详细信息
来源: 评论
Improving the Training Recipe for a Robust Conformer-based Hybrid Model
arXiv
收藏 引用
arXiv 2022年
作者: Zeineldeen, Mohammad Xu, Jingjing Lüscher, Christoph Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
Speaker adaptation is important to build robust automatic speech recognition (ASR) systems. In this work, we investigate various methods for speaker adaptive training (SAT) based on feature-space approaches for a conf... 详细信息
来源: 评论
Combining TF-GridNet And Mixture Encoder For Continuous Speech Separation For Meeting Transcription
Combining TF-GridNet And Mixture Encoder For Continuous Spee...
收藏 引用
IEEE Spoken language technology Workshop
作者: Peter Vieting Simon Berger Thilo von Neumann Christoph Boeddeker Ralf Schlüter Reinhold Haeb-Umbach Machine Learning and Human Language Technology Group RWTH Aachen University Germany AppTek GmbH Germany Paderborn University Germany
Many real-life applications of automatic speech recognition (ASR) require processing of overlapped speech. A common method involves first separating the speech into overlap-free streams on which ASR is performed. Rece... 详细信息
来源: 评论
ENHANCING AND ADVERSARIAL: IMPROVE ASR WITH SPEAKER LABELS
arXiv
收藏 引用
arXiv 2022年
作者: Zhou, Wei Wu, Haotian Xu, Jingjing Zeineldeen, Mohammad Lüscher, Christoph Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52074 Germany AppTek GmbH Aachen52062 Germany
ASR can be improved by multi-task learning (MTL) with domain enhancing or domain adversarial training, which are two opposite objectives with the aim to increase/decrease domain variance towards domain-aware/agnostic ... 详细信息
来源: 评论