咨询与建议

限定检索结果

文献类型

  • 260 篇 会议
  • 94 篇 期刊文献

馆藏范围

  • 354 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 238 篇 工学
    • 174 篇 计算机科学与技术...
    • 160 篇 软件工程
    • 63 篇 信息与通信工程
    • 22 篇 机械工程
    • 18 篇 控制科学与工程
    • 12 篇 电子科学与技术(可...
    • 11 篇 电气工程
    • 9 篇 化学工程与技术
    • 8 篇 光学工程
    • 8 篇 生物工程
    • 6 篇 生物医学工程(可授...
    • 3 篇 仪器科学与技术
    • 2 篇 动力工程及工程热...
    • 1 篇 材料科学与工程(可...
    • 1 篇 农业工程
  • 151 篇 理学
    • 107 篇 物理学
    • 60 篇 数学
    • 32 篇 统计学(可授理学、...
    • 19 篇 系统科学
    • 10 篇 化学
    • 10 篇 生物学
    • 1 篇 地球物理学
  • 27 篇 管理学
    • 22 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
    • 3 篇 工商管理
  • 2 篇 法学
    • 2 篇 社会学
  • 2 篇 文学
    • 2 篇 外国语言文学
    • 1 篇 中国语言文学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学
    • 1 篇 作物学
  • 1 篇 医学
  • 1 篇 艺术学

主题

  • 68 篇 speech recogniti...
  • 41 篇 training
  • 38 篇 hidden markov mo...
  • 22 篇 neural machine t...
  • 20 篇 machine translat...
  • 19 篇 decoding
  • 18 篇 computer aided l...
  • 18 篇 handwriting reco...
  • 15 篇 feature extracti...
  • 15 篇 transducers
  • 15 篇 recurrent neural...
  • 14 篇 vocabulary
  • 13 篇 error analysis
  • 12 篇 databases
  • 10 篇 modeling languag...
  • 10 篇 speech
  • 10 篇 humans
  • 9 篇 training data
  • 9 篇 signal processin...
  • 9 篇 optimization

机构

  • 52 篇 human language t...
  • 40 篇 apptek gmbh aach...
  • 40 篇 human language t...
  • 32 篇 human language t...
  • 31 篇 human language t...
  • 26 篇 apptek gmbh aach...
  • 21 篇 human language t...
  • 16 篇 human language t...
  • 14 篇 apptek gmbh
  • 13 篇 human language t...
  • 10 篇 human language t...
  • 10 篇 machine learning...
  • 9 篇 spoken language ...
  • 9 篇 human language t...
  • 8 篇 computer science...
  • 8 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 5 篇 a2ia sa

作者

  • 220 篇 ney hermann
  • 85 篇 hermann ney
  • 70 篇 schlüter ralf
  • 26 篇 ralf schlüter
  • 21 篇 ralf schluter
  • 20 篇 wuebker joern
  • 19 篇 zhou wei
  • 18 篇 gao yingbo
  • 18 篇 zeyer albert
  • 14 篇 kim yunsu
  • 14 篇 herold christian
  • 14 篇 thulke david
  • 13 篇 mansour saab
  • 13 篇 zeineldeen moham...
  • 13 篇 patrick doetsch
  • 13 篇 peitz stephan
  • 13 篇 huck matthias
  • 12 篇 peter jan-thorst...
  • 12 篇 yang zijian
  • 12 篇 michel wilfried

语言

  • 349 篇 英文
  • 4 篇 其他
  • 1 篇 中文
检索条件"机构=Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen"
354 条 记 录,以下是51-60 订阅
排序:
Diving Deep into Context-Aware Neural Machine Translation  5
Diving Deep into Context-Aware Neural Machine Translation
收藏 引用
5th Conference on Machine Translation, WMT 2020
作者: Huo, Jingjing Herold, Christian Gao, Yingbo Dahlmann, Leonard Khadivi, Shahram Ney, Hermann eBay Inc. Aachen Germany Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen Germany
Context-aware neural machine translation (NMT) is a promising direction to improve the translation quality by making use of the additional context, e.g., document-level translation, or having meta-information. Althoug... 详细信息
来源: 评论
Classification Error Bound for Low Bayes Error Conditions in Machine Learning
Classification Error Bound for Low Bayes Error Conditions in...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Zijian Yang Vahe Eminyan Ralf Schlüter Hermann Ney Computer Science Department Machine Learning and Human Language Technology Group Lehrstuhl Informatik 6 RWTH Aachen University Germany AppTek GmbH Germany
In statistical classification and machine learning, classification error is an important performance measure, which is minimized by the Bayes decision rule. In practice, the unknown true distribution is usually replac... 详细信息
来源: 评论
Classification Error Bound for Low Bayes Error Conditions in Machine Learning
arXiv
收藏 引用
arXiv 2025年
作者: Yang, Zijian Eminyan, Vahe Schlüter, Ralf Ney, Hermann Machine Learning and Human Language Technology Group Lehrstuhl Informatik 6 Computer Science Department RWTH Aachen University Germany AppTek GmbH Germany
In statistical classification and machine learning, classification error is an important performance measure, which is minimized by the Bayes decision rule. In practice, the unknown true distribution is usually replac... 详细信息
来源: 评论
Unifying Input and Output Smoothing in Neural Machine Translation  28
Unifying Input and Output Smoothing in Neural Machine Transl...
收藏 引用
28th International Conference on Computational Linguistics, COLING 2020
作者: Gao, Yingbo Liao, Baohao Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
Soft contextualized data augmentation is a recent method that replaces one-hot representation of words with soft posterior distributions of an external language model, smoothing the input of neural machine translation... 详细信息
来源: 评论
Two-Way Neural Machine Translation: A Proof of Concept for Bidirectional Translation Modeling Using a Two-Dimensional Grid
Two-Way Neural Machine Translation: A Proof of Concept for B...
收藏 引用
IEEE Spoken language technology Workshop
作者: Parnia Bahar Christopher Brix Hermann Ney Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen Germany AppTek GmbH Aachen Germany
Neural translation models have proven to be effective in capturing sufficient information from a source sentence and generating a high-quality target sentence. However, it is not easy to get the best effect for bidire... 详细信息
来源: 评论
Tight Integrated End-to-End Training for Cascaded Speech Translation
Tight Integrated End-to-End Training for Cascaded Speech Tra...
收藏 引用
IEEE Spoken language technology Workshop
作者: Parnia Bahar Tobias Bieschke Ralf Schlüter Hermann Ney Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen Germany AppTek GmbH Aachen Germany
A cascaded speech translation model relies on discrete and non-differentiable transcription, which provides a supervision signal from the source side and helps the transformation between source speech and target text.... 详细信息
来源: 评论
On Architectures and Training for Raw Waveform Feature Extraction in ASR
On Architectures and Training for Raw Waveform Feature Extra...
收藏 引用
IEEE Workshop on Automatic Speech recognition and Understanding
作者: Peter Vieting Christoph Lüscher Wilfried Michel Ralf Schlüter Hermann Ney Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen Germany AppTek GmbH Aachen Germany
With the success of neural network based modeling in auto-matic speech recognition (ASR), many studies investigated acoustic modeling and learning of feature extractors directly based on the raw waveform. Recently, on... 详细信息
来源: 评论
Adapting document-grounded dialog systems to spoken conversations using data augmentation and a noisy channel model
arXiv
收藏 引用
arXiv 2021年
作者: Thulke, David Daheim, Nico Dugast, Christian Ney, Hermann Human Language Technology and Pattern Recognition Group RWTH Aachen University Germany AppTek GmbH Aachen Germany
This paper summarizes our submission to Task 2 of the second track of the 10th Dialog System technology Challenge (DSTC10) "Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations". Simila...
来源: 评论
Refined Statistical Bounds for Classification Error Mismatches with Constrained Bayes Error
Refined Statistical Bounds for Classification Error Mismatch...
收藏 引用
IEEE (first ITW conference of the year) Information Theory Workshop (ITW)
作者: Zijian Yang Vahe Eminyan Ralf Schlüter Hermann Ney Computer Science Department Machine Learning and Human Language Technology Group Lehrstuhl Informatik 6 RWTH Aachen University Germany AppTek GmbH Germany
In statistical classification/multiple hypothesis testing and machine learning, a model distribution estimated from the training data is usually applied to replace the unknown true distribution in the Bayes decision r... 详细信息
来源: 评论
Towards consistent hybrid HMM acoustic modeling
arXiv
收藏 引用
arXiv 2021年
作者: Raissi, Tina Beck, Eugen Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Group RWTH Aachen University Germany AppTek GmbH Aachen Germany
High-performance hybrid automatic speech recognition (ASR) systems are often trained with clustered triphone outputs, and thus require a complex training pipeline to generate the clustering. The same complex pipeline ... 详细信息
来源: 评论