咨询与建议

限定检索结果

文献类型

  • 145 篇 会议
  • 79 篇 期刊文献

馆藏范围

  • 224 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 161 篇 工学
    • 116 篇 计算机科学与技术...
    • 102 篇 软件工程
    • 47 篇 信息与通信工程
    • 16 篇 电气工程
    • 15 篇 电子科学与技术(可...
    • 14 篇 控制科学与工程
    • 13 篇 机械工程
    • 6 篇 生物工程
    • 5 篇 化学工程与技术
    • 5 篇 生物医学工程(可授...
    • 3 篇 光学工程
    • 3 篇 交通运输工程
    • 2 篇 动力工程及工程热...
  • 101 篇 理学
    • 74 篇 物理学
    • 39 篇 数学
    • 19 篇 统计学(可授理学、...
    • 12 篇 系统科学
    • 7 篇 生物学
    • 5 篇 化学
  • 18 篇 管理学
    • 11 篇 图书情报与档案管...
    • 5 篇 管理科学与工程(可...
    • 3 篇 工商管理
    • 2 篇 公共管理
  • 4 篇 法学
    • 4 篇 社会学
  • 4 篇 医学
    • 4 篇 临床医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 公共卫生与预防医...
  • 2 篇 文学
    • 2 篇 新闻传播学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 教育学
    • 1 篇 体育学
  • 1 篇 农学

主题

  • 51 篇 speech recogniti...
  • 15 篇 training
  • 14 篇 hidden markov mo...
  • 13 篇 neural machine t...
  • 12 篇 machine translat...
  • 12 篇 decoding
  • 12 篇 transducers
  • 11 篇 computer aided l...
  • 9 篇 error analysis
  • 9 篇 recurrent neural...
  • 8 篇 speech
  • 8 篇 feature extracti...
  • 8 篇 neural network
  • 7 篇 modelling langua...
  • 7 篇 vocabulary
  • 7 篇 humans
  • 6 篇 handwriting reco...
  • 5 篇 hierarchical sys...
  • 5 篇 modeling languag...
  • 5 篇 signal processin...

机构

  • 40 篇 human language t...
  • 37 篇 apptek gmbh aach...
  • 32 篇 human language t...
  • 20 篇 human language t...
  • 10 篇 human language t...
  • 9 篇 human language t...
  • 8 篇 computer science...
  • 8 篇 human language t...
  • 7 篇 spoken language ...
  • 7 篇 apptek gmbh aach...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 5 篇 pattern recognit...
  • 5 篇 human language t...
  • 5 篇 future technolog...
  • 4 篇 human language t...
  • 4 篇 institute of res...
  • 4 篇 school of medici...
  • 3 篇 human language t...

作者

  • 140 篇 ney hermann
  • 55 篇 schlüter ralf
  • 36 篇 hermann ney
  • 16 篇 zeyer albert
  • 16 篇 zhou wei
  • 15 篇 ralf schluter
  • 14 篇 gao yingbo
  • 12 篇 ralf schlüter
  • 12 篇 mansour saab
  • 12 篇 zeineldeen moham...
  • 12 篇 michel wilfried
  • 12 篇 zens richard
  • 11 篇 herold christian
  • 10 篇 bahar parnia
  • 10 篇 peitz stephan
  • 9 篇 peter jan-thorst...
  • 9 篇 schluter ralf
  • 9 篇 freitag markus
  • 9 篇 wang weiyue
  • 8 篇 wuebker joern

语言

  • 224 篇 英文
检索条件"机构=Human Language Technology and Pattern Recognition-Computer Science Department"
224 条 记 录,以下是111-120 订阅
排序:
EM-style optimization of hidden conditional random fields for grapheme-to-phoneme conversion
EM-style optimization of hidden conditional random fields fo...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Georg Heigold Stefan Hahn Patrick Lehnen Hermann Ney Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
We have recently proposed an EM-style algorithm to optimize log-linear models with hidden variables. In this paper, we use this algorithm to optimize a hidden conditional random field, i.e., a conditional random field... 详细信息
来源: 评论
Revisiting Checkpoint Averaging for Neural Machine Translation
arXiv
收藏 引用
arXiv 2022年
作者: Gao, Yingbo Herold, Christian Yang, Zijian Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University Germany
Checkpoint averaging is a simple and effective method to boost the performance of converged neural machine translation models. The calculation is cheap to perform and the fact that the translation improvement almost c... 详细信息
来源: 评论
Feature selection for log-linear acoustic models
Feature selection for log-linear acoustic models
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: S. Wiesler A. Richard Y. Kubo R. Schlüter H. Ney Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
Log-linear acoustic models have been shown to be competitive with Gaussian mixture models in speech recognition. Their high training time can be reduced by feature selection. We compare a simple univariate feature sel... 详细信息
来源: 评论
Silence is golden: Modeling non-speech events in WFST-based dynamic network decoders
Silence is golden: Modeling non-speech events in WFST-based ...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: David Rybach Ralf Schlüter Hermann Ney Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
Models for silence are a fundamental part of continuous speech recognition systems. Depending on application requirements, audio data segmentation, and availability of detailed training data annotations, it may be nec... 详细信息
来源: 评论
Faster sequence training
Faster sequence training
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Albert Zeyer Ilia Kulikov Ralf Schluter Hermann Ney Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University 52062 Germany
It has been shown that sequence-discriminative training can improve the performance for large vocabulary continuous speech recognition. Our main contribution is a novel method for reducing the computation time of any ... 详细信息
来源: 评论
Phase difference of filter-stable part-tones as acoustic feature
Phase difference of filter-stable part-tones as acoustic fea...
收藏 引用
IEEE/SP Workshop on Statistical Signal Processing (SSP)
作者: Zoltán Tüske Friedhelm R. Drepper Ralf Schlüter Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
A part-tone decomposition of voiced sections of speech is introduced, which is adapted with high accuracy to the frequency of the glottal oscillator of the speaker. The iterative replacement of the center filter frequ... 详细信息
来源: 评论
Speaker adapted beamforming for multi-channel automatic speech recognition
arXiv
收藏 引用
arXiv 2018年
作者: Menne, Tobias Schluter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
This paper presents, in the context of multi-channel ASR, a method to adapt a mask based, statistically optimal beamforming approach to a speaker of interest. The beamforming vector of the statistically optimal beamfo... 详细信息
来源: 评论
Incorporating alignments into Conditional Random Fields for grapheme to phoneme conversion
Incorporating alignments into Conditional Random Fields for ...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Patrick Lehnen Stefan Hahn Andreas Guta Hermann Ney Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
Conditional Random Fields (CRFs) are a state-of-the-art approach to natural language processing tasks like grapheme-to phoneme (g2p) conversion which is used to produce pronunciations or pronunciation variants for alm... 详细信息
来源: 评论
Articulatory motivated acoustic features for speech recognition
Articulatory motivated acoustic features for speech recognit...
收藏 引用
9th European Conference on Speech Communication and technology
作者: Kocharov, Daniil Zolnay, András Schlüter, Ralf Ney, Hermann Department of Phonetics Faculty of Philology Saint-Petersburg State University 199034 Saint Petersburg Russia Human Language Technology and Pattern Recognition Lehrstuhl für Informatik VI Computer Science Department RWTH Aachen University 52056 Aachen Germany
In this paper, we consider the use of multiple acoustic features of the speech signal for continuous speech recognition. A novel articulatory motivated acoustic feature is introduced, namely the spectrum derivative fe... 详细信息
来源: 评论
Comparison of lattice-free and lattice-based sequence discriminative training criteria for LVCSR
arXiv
收藏 引用
arXiv 2019年
作者: Michel, Wilfried Schlüter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen52056 Germany
Sequence discriminative training criteria have long been a standard tool in automatic speech recognition for improving the performance of acoustic models over their maximum likelihood / cross entropy trained counterpa... 详细信息
来源: 评论