咨询与建议

限定检索结果

文献类型

  • 145 篇 会议
  • 79 篇 期刊文献

馆藏范围

  • 224 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 161 篇 工学
    • 116 篇 计算机科学与技术...
    • 102 篇 软件工程
    • 47 篇 信息与通信工程
    • 16 篇 电气工程
    • 15 篇 电子科学与技术(可...
    • 14 篇 控制科学与工程
    • 13 篇 机械工程
    • 6 篇 生物工程
    • 5 篇 化学工程与技术
    • 5 篇 生物医学工程(可授...
    • 3 篇 光学工程
    • 3 篇 交通运输工程
    • 2 篇 动力工程及工程热...
  • 101 篇 理学
    • 74 篇 物理学
    • 39 篇 数学
    • 19 篇 统计学(可授理学、...
    • 12 篇 系统科学
    • 7 篇 生物学
    • 5 篇 化学
  • 18 篇 管理学
    • 11 篇 图书情报与档案管...
    • 5 篇 管理科学与工程(可...
    • 3 篇 工商管理
    • 2 篇 公共管理
  • 4 篇 法学
    • 4 篇 社会学
  • 4 篇 医学
    • 4 篇 临床医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 公共卫生与预防医...
  • 2 篇 文学
    • 2 篇 新闻传播学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 教育学
    • 1 篇 体育学
  • 1 篇 农学

主题

  • 51 篇 speech recogniti...
  • 15 篇 training
  • 14 篇 hidden markov mo...
  • 13 篇 neural machine t...
  • 12 篇 machine translat...
  • 12 篇 decoding
  • 12 篇 transducers
  • 11 篇 computer aided l...
  • 9 篇 error analysis
  • 9 篇 recurrent neural...
  • 8 篇 speech
  • 8 篇 feature extracti...
  • 8 篇 neural network
  • 7 篇 modelling langua...
  • 7 篇 vocabulary
  • 7 篇 humans
  • 6 篇 handwriting reco...
  • 6 篇 automatic speech...
  • 5 篇 hierarchical sys...
  • 5 篇 modeling languag...

机构

  • 40 篇 human language t...
  • 37 篇 apptek gmbh aach...
  • 32 篇 human language t...
  • 20 篇 human language t...
  • 10 篇 human language t...
  • 9 篇 human language t...
  • 8 篇 computer science...
  • 8 篇 human language t...
  • 7 篇 spoken language ...
  • 7 篇 apptek gmbh aach...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 5 篇 pattern recognit...
  • 5 篇 human language t...
  • 5 篇 future technolog...
  • 4 篇 human language t...
  • 4 篇 institute of res...
  • 4 篇 school of medici...
  • 3 篇 human language t...

作者

  • 140 篇 ney hermann
  • 55 篇 schlüter ralf
  • 36 篇 hermann ney
  • 16 篇 zeyer albert
  • 16 篇 zhou wei
  • 15 篇 ralf schluter
  • 14 篇 gao yingbo
  • 12 篇 ralf schlüter
  • 12 篇 mansour saab
  • 12 篇 zeineldeen moham...
  • 12 篇 michel wilfried
  • 12 篇 zens richard
  • 11 篇 herold christian
  • 10 篇 bahar parnia
  • 10 篇 peitz stephan
  • 9 篇 peter jan-thorst...
  • 9 篇 schluter ralf
  • 9 篇 freitag markus
  • 9 篇 wang weiyue
  • 8 篇 wuebker joern

语言

  • 224 篇 英文
检索条件"机构=Human Language Technology and Pattern Recognition-Computer Science Department"
224 条 记 录,以下是121-130 订阅
排序:
DEEP HIERARCHICAL BOTTLENECK MRASTA FEATURES FOR LVCSR
DEEP HIERARCHICAL BOTTLENECK MRASTA FEATURES FOR LVCSR
收藏 引用
IEEE International Conference on Acoustics, Speech, and Signal Processing
作者: Zoltan Tuske Ralf Schluter Hermann Ney Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University 52056 Aachen Germany
Hierarchical Multi Layer Perceptron (MLP) based long-term feature extraction is optimized for TANDEM connectionist large vocabulary continuous speech recognition (LVCSR) system within the QUAERO project. Training the ... 详细信息
来源: 评论
ACOUSTIC MODELING OF SPEECH WAVEFORM BASED ON MULTI-RESOLUTION, NEURAL NETWORK SIGNAL PROCESSING
ACOUSTIC MODELING OF SPEECH WAVEFORM BASED ON MULTI-RESOLUTI...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Zoltán Tüske Ralf Schlüter Hermann Ney Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University 52056 Aachen Germany
Recently, several papers have demonstrated that neural networks (NN) are able to perform the feature extraction as part of the acoustic model. Motivated by the Gammatone feature extraction pipeline, in this paper we e... 详细信息
来源: 评论
MULTILINGUAL MRASTA FEATURES FOR LOW-RESOURCE KEYWORD SEARCH AND SPEECH recognition SYSTEMS
MULTILINGUAL MRASTA FEATURES FOR LOW-RESOURCE KEYWORD SEARCH...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Zoltan Tuske David Nolden Ralf Schluter Hermann Ney Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University 52056 Aachen Germany
This paper investigates the application of hierarchical MRASTA bottleneck (BN) features for under-resourced languages within the IARPA Babel project. Through multilingual training of Multilayer Perceptron (MLP) BN fea... 详细信息
来源: 评论
Prediction of LSTM-RNN Full Context States as a Subtask for N-Gram Feedforward language Models
Prediction of LSTM-RNN Full Context States as a Subtask for ...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Kazuki Irie Zhihong Lei Ralf Schlüter Hermann Ney Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University D-52056 Aachen Germany
Long short-term memory (LSTM) recurrent neural network language models compress the full context of variable lengths into a fixed size vector. In this work, we investigate the task of predicting the LSTM hidden repres... 详细信息
来源: 评论
INVESTIGATION ON CROSS- AND MULTILINGUAL MLP FEATURES UNDER MATCHED AND MISMATCHED ACOUSTICAL CONDITIONS
INVESTIGATION ON CROSS- AND MULTILINGUAL MLP FEATURES UNDER ...
收藏 引用
IEEE International Conference on Acoustics, Speech, and Signal Processing
作者: Zoltan Tuske Joel Pinto Daniel Willett Ralf Schluter Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Nuance Communications Deutschland GmbH
In this paper, Multi Layer Perceptron (MLP) based multilingual bottleneck features are investigated for acoustic modeling in three languages -- German, French, and US English. We use a modified training algorithm to h... 详细信息
来源: 评论
Development of the 2007 RWTH Mandarin LVCSR system
Development of the 2007 RWTH Mandarin LVCSR system
收藏 引用
IEEE Workshop on Automatic Speech recognition and Understanding
作者: Bjorn Hoffmeister Christian Plahl Peter Fritz Georg Heigold Jonas Loof Ralf Schluter Hermann Ney Human Language and Pattern Recognition Computer Science Department 6 RWTH Aachen University Germany
This paper describes the development of the RWTH Mandarin LVCSR system. Different acoustic front-ends together with multiple system cross-adaptation are used in a two stage decoding framework. We describe the system i... 详细信息
来源: 评论
Does Joint Training Really Help Cascaded Speech Translation?
arXiv
收藏 引用
arXiv 2022年
作者: Tran, Viet Anh Khoa Thulke, David Gao, Yingbo Herold, Christian Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
Currently, in speech translation, the straightforward approach - cascading a recognition system with a translation system - delivers state-of-the-art results. However, fundamental challenges such as error propagation ... 详细信息
来源: 评论
Improvements in Dynamic Programming Beam Search for Phrase-based Statistical Machine Translation  5
Improvements in Dynamic Programming Beam Search for Phrase-b...
收藏 引用
5th International Workshop on Spoken language Translation, IWSLT 2008
作者: Zens, Richard Ney, Hermann Human Language Technology and Pattern Recognition Lehrstuhl für Informatik 6 Computer Science Department RWTH Aachen University AachenD-52056 Germany Google Inc. 1600 Am-phitheatre Parkway Mountain ViewCA94043 United States
Search is a central component of any statistical machine translation system. We describe the search for phrase-based SMT in detail and show its importance for achieving good translation quality. We introduce an explic... 详细信息
来源: 评论
Towards two-dimensional sequence to sequence model in neural machine translation
arXiv
收藏 引用
arXiv 2018年
作者: Bahar, Parnia Brix, Christopher Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department Rwth Aachen University AachenD-52056 Germany
This work investigates an alternative model for neural machine translation (NMT) and proposes a novel architecture, where we employ a multi-dimensional long short-term memory (MDLSTM) for translation modeling. In the ... 详细信息
来源: 评论
Successfully Applying the Stabilized Lottery Ticket Hypothesis to the Transformer Architecture
arXiv
收藏 引用
arXiv 2020年
作者: Brix, Christopher Bahar, Parnia Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
Sparse models require less memory for storage and enable a faster inference by reducing the necessary number of FLOPs. This is relevant both for time-critical and on-device computations using neural networks. The stab... 详细信息
来源: 评论