咨询与建议

限定检索结果

文献类型

  • 145 篇 会议
  • 79 篇 期刊文献

馆藏范围

  • 224 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 161 篇 工学
    • 116 篇 计算机科学与技术...
    • 102 篇 软件工程
    • 47 篇 信息与通信工程
    • 16 篇 电气工程
    • 15 篇 电子科学与技术(可...
    • 14 篇 控制科学与工程
    • 13 篇 机械工程
    • 6 篇 生物工程
    • 5 篇 化学工程与技术
    • 5 篇 生物医学工程(可授...
    • 3 篇 光学工程
    • 3 篇 交通运输工程
    • 2 篇 动力工程及工程热...
  • 101 篇 理学
    • 74 篇 物理学
    • 39 篇 数学
    • 19 篇 统计学(可授理学、...
    • 12 篇 系统科学
    • 7 篇 生物学
    • 5 篇 化学
  • 18 篇 管理学
    • 11 篇 图书情报与档案管...
    • 5 篇 管理科学与工程(可...
    • 3 篇 工商管理
    • 2 篇 公共管理
  • 4 篇 法学
    • 4 篇 社会学
  • 4 篇 医学
    • 4 篇 临床医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 公共卫生与预防医...
  • 2 篇 文学
    • 2 篇 新闻传播学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 教育学
    • 1 篇 体育学
  • 1 篇 农学

主题

  • 51 篇 speech recogniti...
  • 15 篇 training
  • 14 篇 hidden markov mo...
  • 13 篇 neural machine t...
  • 12 篇 machine translat...
  • 12 篇 decoding
  • 12 篇 transducers
  • 11 篇 computer aided l...
  • 9 篇 error analysis
  • 9 篇 recurrent neural...
  • 8 篇 speech
  • 8 篇 feature extracti...
  • 8 篇 neural network
  • 7 篇 modelling langua...
  • 7 篇 vocabulary
  • 7 篇 humans
  • 6 篇 handwriting reco...
  • 6 篇 automatic speech...
  • 5 篇 hierarchical sys...
  • 5 篇 modeling languag...

机构

  • 40 篇 human language t...
  • 37 篇 apptek gmbh aach...
  • 32 篇 human language t...
  • 20 篇 human language t...
  • 10 篇 human language t...
  • 9 篇 human language t...
  • 8 篇 computer science...
  • 8 篇 human language t...
  • 7 篇 spoken language ...
  • 7 篇 apptek gmbh aach...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 6 篇 human language t...
  • 5 篇 pattern recognit...
  • 5 篇 human language t...
  • 5 篇 future technolog...
  • 4 篇 human language t...
  • 4 篇 institute of res...
  • 4 篇 school of medici...
  • 3 篇 human language t...

作者

  • 140 篇 ney hermann
  • 55 篇 schlüter ralf
  • 36 篇 hermann ney
  • 16 篇 zeyer albert
  • 16 篇 zhou wei
  • 15 篇 ralf schluter
  • 14 篇 gao yingbo
  • 12 篇 ralf schlüter
  • 12 篇 mansour saab
  • 12 篇 zeineldeen moham...
  • 12 篇 michel wilfried
  • 12 篇 zens richard
  • 11 篇 herold christian
  • 10 篇 bahar parnia
  • 10 篇 peitz stephan
  • 9 篇 peter jan-thorst...
  • 9 篇 schluter ralf
  • 9 篇 freitag markus
  • 9 篇 wang weiyue
  • 8 篇 wuebker joern

语言

  • 224 篇 英文
检索条件"机构=Human Language Technology and Pattern Recognition-Computer Science Department"
224 条 记 录,以下是141-150 订阅
Phrase Training Based Adaptation for Statistical Machine Translation  2
Phrase Training Based Adaptation for Statistical Machine Tra...
收藏 引用
2nd Workshop on Computational Linguistics for Literature, CLfL 2013 at the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: human language Technologies, NAACL-HLT 2013
作者: Mansour, Saab Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
We present a novel approach for translation model (TM) adaptation using phrase training. The proposed adaptation procedure is initialized with a standard general-domain TM, which is then used to perform phrase trainin... 详细信息
来源: 评论
Improving Continuous Sign language recognition: Speech recognition Techniques and System Design  4
Improving Continuous Sign Language Recognition: Speech Recog...
收藏 引用
4th Workshop on Speech and language Processing for Assistive Technologies, SLPAT 2013
作者: Forster, Jens Koller, Oscar Oberdorfer, Christian Gweth, Yannick Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University Aachen Germany
Automatic sign language recognition (ASLR) is a special case of automatic speech recognition (ASR) and computer vision (CV) and is currently evolving from using artificial labgenerated data to using 'real-life'... 详细信息
来源: 评论
The RWTH Aachen Machine Translation System for WMT 2013  8
The RWTH Aachen Machine Translation System for WMT 2013
收藏 引用
8th Workshop on Statistical Machine Translation, WMT 2013
作者: Peitz, Stephan Mansour, Saab Peter, Jan-Thorsten Schmidt, Christoph Wuebker, Joern Huck, Matthias Freitag, Markus Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
This paper describes the statistical machine translation (SMT) systems developed at RWTH Aachen University for the translation task of the ACL 2013 Eighth Workshop on Statistical Machine Translation (WMT 2013). We par... 详细信息
来源: 评论
A Phrase Orientation Model for Hierarchical Machine Translation  8
A Phrase Orientation Model for Hierarchical Machine Translat...
收藏 引用
8th Workshop on Statistical Machine Translation, WMT 2013
作者: Huck, Matthias Wuebker, Joern Rietig, Felix Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
We introduce a lexicalized reordering model for hierarchical phrase-based machine translation. The model scores monotone, swap, and discontinuous phrase orientations in the manner of the one presented by Tillmann (200... 详细信息
来源: 评论
Feature-rich sub-lexical language models using a maximum entropy approach for German LVCSR
Feature-rich sub-lexical language models using a maximum ent...
收藏 引用
14th Annual Conference of the International Speech Communication Association, INTERSPEECH 2013
作者: Shaik, M. Ali Basha El-Desoky Mousa, Amr Schlüter, Ralf Ney, Hermann Computer Science Department Human Language Technology and Pattern Recognition RWTH Aachen University Aachen Germany Spoken Language Processing Group LIMSI CNRS Paris France
German is a morphologically rich language having a high degree of word inflections, derivations and compounding. This leads to high out-of-vocabulary (OOV) rates and poor language model (LM) probabilities in the large... 详细信息
来源: 评论
Morpheme level hierarchical pitman-Yor class-based language models for LVCSR of morphologically rich languages
Morpheme level hierarchical pitman-Yor class-based language ...
收藏 引用
14th Annual Conference of the International Speech Communication Association, INTERSPEECH 2013
作者: El-Desoky Mousa, Amr Shaik, M. Ali Basha Schlüter, Ralf Ney, Hermann Computer Science Department Human Language Technology and Pattern Recognition RWTH Aachen University Aachen Germany Spoken Language Processing Group LIMSI CNRS Paris France
Performing large vocabulary continuous speech recognition (LVCSR) for morphologically rich languages is considered a challenging task. The morphological richness of such languages leads to high out-of-vocabulary (OOV)... 详细信息
来源: 评论
Investigations on hessian-free optimization for cross-entropy training of deep neural networks
Investigations on hessian-free optimization for cross-entrop...
收藏 引用
14th Annual Conference of the International Speech Communication Association, INTERSPEECH 2013
作者: Wiesler, Simon Li, Jinyu Xue, Jian Computer Science Department Human Language Technology and Pattern Recognition RWTH Aachen University 52056 Aachen Germany Microsoft Corporation Redmond WA 98052 United States
Context-dependent deep neural network HMMs have been shown to achieve recognition accuracy superior to Gaussian mixture models in a number of recent works. Typically, neural networks are optimized with stochastic grad... 详细信息
来源: 评论
OPEN VOCABULARY HANDWRITING recognition USING COMBINED WORD-LEVEL AND CHARACTER-LEVEL language MODELS
OPEN VOCABULARY HANDWRITING RECOGNITION USING COMBINED WORD-...
收藏 引用
IEEE International Conference on Acoustics, Speech, and Signal Processing
作者: Michal Kozielski David Rybach Stefan Hahn Ralf Schluter Hermann Ney Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany
In this paper, we present a unified search strategy for open vocabulary handwriting recognition using weighted finite state transducers. Additionally to a standard word-level language model we introduce a separate n-g... 详细信息
来源: 评论
FEATURE COMBINATION AND STACKING OF RECURRENT AND NON-RECURRENT NEURAL NETWORKS FOR LVCSR
FEATURE COMBINATION AND STACKING OF RECURRENT AND NON-RECURR...
收藏 引用
IEEE International Conference on Acoustics, Speech, and Signal Processing
作者: Christian Plahl Michael Kozielski Ralf Schluter Hermann Ney Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University
This paper investigates the combination of different short-term features and the combination of recurrent and non-recurrent neural networks (NNs) on a Spanish speech recognition task. Several methods exist to combine ... 详细信息
来源: 评论
Morpheme-based feature-rich language models using Deep Neural Networks for LVCSR of Egyptian Arabic
Morpheme-based feature-rich language models using Deep Neura...
收藏 引用
2013 38th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2013
作者: El-Desoky Mousa, Amr Kuo, Hong-Kwang Jeff Mangu, Lidia Soltau, Hagen Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University 52056 Aachen Germany IBM T. J. Watson Research Center Yorktown Heights NY 10598 United States
Egyptian Arabic (EA) is a colloquial version of Arabic. It is a low-resource morphologically rich language that causes problems in Large Vocabulary Continuous Speech recognition (LVCSR). Building LMs on morpheme level... 详细信息
来源: 评论