This paper presents the results of a mathematical modeling (computer simulation) effort that applied frame-based, data processing constructs, originally developed and applied in the context of artificial intelligence,...
This paper presents the results of a mathematical modeling (computer simulation) effort that applied frame-based, data processing constructs, originally developed and applied in the context of artificial intelligence, to the decomposition of a complex Air Force bomber mission. The model was written in LISP to facilitate the development of a concurrent processing environment in which to simulate the simultaneous occurrence of multiple external events/crew tasks. The model simulated a four hour segment of a strategic mission scenario. Two distinct crew complements, four-man and two-man, together with their respective levels of aircraft avionics automation, were represented during a proof-of-concept demonstration. The model provided measures of resource (crew and “black box”) utilization, presumed to correlate to “workload,” at different levels of specificity. These measures were used to identify crew task “chokepoints” (large queue sizes, task interrupts) and to evaluate the effects of automation.
This paper provides a context within which the role of human factors engineering (HFE) for Naval ship design may be understood. HFE is defined and its history as part of engineering design teams is traced. The role of...
This paper provides a context within which the role of human factors engineering (HFE) for Naval ship design may be understood. HFE is defined and its history as part of engineering design teams is traced. The role of HFE in ship systems design is defined, and the HFE Technology for Ships program, managed by SEA 061R, is described. The rationale for inclusion of HFE in the design process is presented, the methodology whereby it is incorporated into the design process is detailed, methodology to assess the application of HFE is outlined, and the benefits that will accrue as a result of inclusion of HFE considerations in the design process are documented. The counterpoint to inclusion is illustrated through instances of design-induced human errors. A specific application of HFE in the acquisition process is illustrated through use of the Landing Craft, Air Cushion HFE program plan. The difficulties which may be encountered as the size of the target system expands are described. Potential roadblocks to the required incorporation of HFE are examined for their source and possible ameliorative steps.
暂无评论