咨询与建议

限定检索结果

文献类型

  • 281 篇 会议
  • 213 篇 期刊文献
  • 6 册 图书

馆藏范围

  • 500 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 286 篇 工学
    • 214 篇 计算机科学与技术...
    • 163 篇 软件工程
    • 52 篇 控制科学与工程
    • 42 篇 信息与通信工程
    • 39 篇 生物工程
    • 36 篇 生物医学工程(可授...
    • 28 篇 光学工程
    • 24 篇 电气工程
    • 17 篇 机械工程
    • 12 篇 仪器科学与技术
    • 11 篇 电子科学与技术(可...
    • 11 篇 化学工程与技术
    • 9 篇 土木工程
    • 8 篇 材料科学与工程(可...
    • 6 篇 建筑学
  • 143 篇 理学
    • 55 篇 数学
    • 52 篇 生物学
    • 42 篇 物理学
    • 20 篇 统计学(可授理学、...
    • 13 篇 化学
    • 8 篇 系统科学
  • 83 篇 管理学
    • 47 篇 图书情报与档案管...
    • 34 篇 管理科学与工程(可...
    • 13 篇 工商管理
  • 51 篇 医学
    • 45 篇 临床医学
    • 31 篇 基础医学(可授医学...
    • 17 篇 药学(可授医学、理...
    • 10 篇 公共卫生与预防医...
  • 18 篇 法学
    • 16 篇 社会学
  • 18 篇 教育学
    • 13 篇 教育学
  • 4 篇 经济学
  • 4 篇 文学
  • 4 篇 农学
  • 2 篇 艺术学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 24 篇 computer science
  • 19 篇 data visualizati...
  • 17 篇 educational inst...
  • 16 篇 humans
  • 15 篇 user interfaces
  • 14 篇 human computer i...
  • 12 篇 visualization
  • 11 篇 laboratories
  • 10 篇 feature extracti...
  • 10 篇 information scie...
  • 9 篇 testing
  • 8 篇 data mining
  • 8 篇 robot sensing sy...
  • 8 篇 displays
  • 8 篇 accuracy
  • 8 篇 computer vision
  • 8 篇 augmented realit...
  • 8 篇 training
  • 7 篇 mobile robots
  • 7 篇 graphical user i...

机构

  • 12 篇 shenzhen key lab...
  • 12 篇 department of co...
  • 11 篇 school of electr...
  • 11 篇 key laboratory o...
  • 9 篇 haihe laboratory...
  • 9 篇 nankai universit...
  • 9 篇 department of co...
  • 9 篇 tianjin key labo...
  • 8 篇 human-robot inte...
  • 7 篇 human-computer i...
  • 7 篇 julius centre fo...
  • 7 篇 department of in...
  • 7 篇 department of in...
  • 6 篇 department of co...
  • 6 篇 health managemen...
  • 6 篇 computer network...
  • 6 篇 shanghai key lab...
  • 5 篇 leeds institute ...
  • 5 篇 department of ph...
  • 5 篇 center for psych...

作者

  • 23 篇 ben shneiderman
  • 22 篇 shneiderman ben
  • 13 篇 zhao hai
  • 12 篇 b. shneiderman
  • 11 篇 zhang zhuosheng
  • 10 篇 heng pheng-ann
  • 9 篇 bederson benjami...
  • 8 篇 plaisant catheri...
  • 8 篇 yang yang
  • 6 篇 lamon edoardo
  • 6 篇 r. kamimura
  • 5 篇 sun yongqian
  • 5 篇 abu-gharbieh ema...
  • 5 篇 fontanelli danie...
  • 5 篇 zhang shenglin
  • 5 篇 wang chengyan
  • 5 篇 pei dan
  • 5 篇 palopoli luigi
  • 5 篇 saveriano matteo
  • 4 篇 wang zi

语言

  • 473 篇 英文
  • 19 篇 其他
  • 7 篇 中文
  • 1 篇 法文
检索条件"机构=Human-Computer Interaction Laboratory Department of Computer and Information Science"
500 条 记 录,以下是111-120 订阅
排序:
Mixed reality based respiratory liver tumor puncture navigation
收藏 引用
Computational Visual Media 2019年 第4期5卷 363-374页
作者: Ruotong Li Weixin Si Xiangyun Liao Qiong Wang Reinhard Klein Pheng-Ann Heng Institute of Computer Science II University of Bonn53115 BonnGermany Shenzhen Key Laboratory of Virtual Reality and Human Interaction Technology Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesChina Department of Computer Science and Engineering Chinese University of Hong KongHong KongChina
This paper presents a novel mixed reality based navigation system for accurate respiratory liver tumor punctures in radiofrequency ablation(RFA).Our system contains an optical see-through head-mounted display device(O... 详细信息
来源: 评论
Toward Efficient Automated Feature Engineering
Toward Efficient Automated Feature Engineering
收藏 引用
International Conference on Data Engineering
作者: Kafeng Wang Pengyang Wang Chengzhong Xu Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Macau China University of Chinese Academy of Sciences Macau China University of Macau Macau China Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen China Department of Computer and Information Science State Key Laboratory of Internet of Things for Smart City University of Macau Macau China
Automated Feature Engineering (AFE) refers to automatically generate and select optimal feature sets for downstream tasks, which has achieved great success in real-world applications. Current AFE methods mainly focus ...
来源: 评论
Technology Roadmap for Flexible Sensors
收藏 引用
ACS NANO 2023年 第6期17卷 5211-5295页
作者: Luo, Yifei Abidian, Mohammad Reza Ahn, Jong-Hyun Akinwande, Deji Andrews, Anne M. Antonietti, Markus Bao, Zhenan Berggren, Magnus Berkey, Christopher A. Bettinger, Christopher John Chen, Jun Chen, Peng Cheng, Wenlong Cheng, Xu Choi, Seon-Jin Chortos, Alex Dagdeviren, Canan Dauskardt, Reinhold H. Di, Chong-an Dickey, Michael D. Duan, Xiangfeng Facchetti, Antonio Fan, Zhiyong Fang, Yin Feng, Jianyou Feng, Xue Gao, Huajian Gao, Wei Gong, Xiwen Guo, Chuan Fei Guo, Xiaojun Hartel, Martin C. He, Zihan Ho, John S. Hu, Youfan Huang, Qiyao Huang, Yu Huo, Fengwei Hussain, Muhammad M. Javey, Ali Jeong, Unyong Jiang, Chen Jiang, Xingyu Kang, Jiheong Karnaushenko, Daniil Khademhosseini, Ali Kim, Dae-Hyeong Kim, Il-Doo Kireev, Dmitry Kong, Lingxuan Lee, Chengkuo Lee, Nae-Eung Lee, Pooi See Lee, Tae-Woo Li, Fengyu Li, Jinxing Liang, Cuiyuan Lim, Chwee Teck Lin, Yuanjing Lipomi, Darren J. Liu, Jia Liu, Kai Liu, Nan Liu, Ren Liu, Yuxin Liu, Yuxuan Liu, Zhiyuan Liu, Zhuangjian Loh, Xian Jun Lu, Nanshu Lv, Zhisheng Magdassi, Shlomo Malliaras, George G. Matsuhisa, Naoji Nathan, Arokia Niu, Simiao Pan, Jieming Pang, Changhyun Pei, Qibing Peng, Huisheng Qi, Dianpeng Ren, Huaying Rogers, John A. Rowe, Aaron Schmidt, Oliver G. Sekitani, Tsuyoshi Seo, Dae-Gyo Shen, Guozhen Sheng, Xing Shi, Qiongfeng Someya, Takao Song, Yanlin Stavrinidou, Eleni Su, Meng Sun, Xuemei Takei, Kuniharu Tao, Xiao-Ming Tee, Benjamin C. K. Thean, Aaron Voon-Yew Trung, Tran Quang Wan, Changjin Wang, Huiliang Wang, Joseph Wang, Ming Wang, Sihong Wang, Ting Wang, Zhong Lin Weiss, Paul S. Wen, Hanqi Xu, Sheng Xu, Tailin Yan, Hongping Yan, Xuzhou Yang, Hui Yang, Le Yang, Shuaijian Yin, Lan Yu, Cunjiang Yu, Guihua Yu, Jing Yu, Shu-Hong Yu, Xinge Zamburg, Evgeny Zhang, Haixia Zhang, Xiangyu Zhang, Xiaosheng Zhang, Xueji Zhang, Yihui Zhang, Yu Zhao, Siyuan Zhao, Xuanhe Zheng, Yuanjin Zheng, Yu-Qing Zheng, Zijian Zhou, Tao Zhu, Bowen Zhu, Ming Zhu, Rong Zhu, Yangzhi Zhu, Yong Zou, Guijin Chen, Xiaodong 08-03 Innovis Singapore 138634 Republic of Singapore Innovative Centre for Flexible Devices (iFLEX) School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore Department of Biomedical Engineering University of Houston Houston Texas 77024 United States School of Electrical and Electronic Engineering Yonsei University Seoul 03722 Republic of Korea Department of Electrical and Computer Engineering The University of Texas at Austin Austin Texas 78712 United States Microelectronics Research Center The University of Texas at Austin Austin Texas 78758 United States Department of Chemistry and Biochemistry California NanoSystems Institute and Department of Psychiatry and Biobehavioral Sciences Semel Institute for Neuroscience and Human Behavior and Hatos Center for Neuropharmacology University of California Los Angeles Los Angeles California 90095 United States Colloid Chemistry Department Max Planck Institute of Colloids and Interfaces 14476 Potsdam Germany Department of Chemical Engineering Stanford University Stanford California 94305 United States Laboratory of Organic Electronics Department of Science and Technology Campus Norrköping Linköping University 83 Linköping Sweden Wallenberg Initiative Materials Science for Sustainability (WISE) and Wallenberg Wood Science Center (WWSC) SE-100 44 Stockholm Sweden Department of Materials Science and Engineering Stanford University Stanford California 94301 United States Department of Biomedical Engineering and Department of Materials Science and Engineering Carnegie Mellon University Pittsburgh Pennsylvania 15213 United States Department of Bioengineering University of California Los Angeles Los Angeles California 90095 United States School of Chemistry Chemical Engineering and Biotechnology Nanyang Technological University Singapore 637457 Singapore Nanobionics Group Department of Chemical and Biological Engineering Monash University Clayton Australia 3800 Monash
humans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitati... 详细信息
来源: 评论
The understanding of congruent and incongruent referential gaze in 17-month-old infants: an eye-tracking study comparing human and robot (vol 10, pg 11918, 2020)
收藏 引用
SCIENTIFIC REPORTS 2020年 第1期10卷 1-10页
作者: Manzi, F. Ishikawa, M. Di Dio, C. Itakura, S. Kanda, T. Ishiguro, H. Massaro, D. Marchetti, A. Research Unit on Theory of Mind Department of Psychology Università Cattolica del Sacro Cuore Milan Italy School of Graduated Letter Department of Psychology Kyoto University Kyoto Japan Centre for Baby Science Doshisha University Kyoto Japan Human-Robot Interaction Laboratory Department of Computer Science Kyoto University Kyoto Japan Advanced Telecommunications Research Institute International IRC/HIL Keihanna Science City Kyoto Japan Department of Systems Innovation Osaka University Toyonaka Japan
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
来源: 评论
Augmented reality and robotics in education: A systematic literature review
Computers in Human Behavior: Artificial Humans
收藏 引用
computers in human Behavior: Artificial humans 2025年 4卷
作者: Christina Pasalidou Chris Lytridis Avgoustos Tsinakos Nikolaos Fachantidis Laboratory of Informatics & Robotic Applications in Education and Society Department of Educational and Social Policy University of Macedonia Thessaloniki Greece Human-Machines Interaction (HUMAIN) Lab Department of Computer Science Democritus University of Thrace Kavala Greece Advanced Educational Technologies and Mobile Applications (AETMA) Lab Department of Computer Science Democritus University of Thrace Kavala Greece
Integrating cutting-edge technologies into education has been a continuous goal to enhance teaching and learning experiences. Augmented Reality (AR) and robotics are two emerging technologies that have shown promise i... 详细信息
来源: 评论
A Simulation Study of Transcranial Magnetoacoustic Stimulation of the Basal Ganglia Thalamic Neural Network to Improve Parkinson's Disease Status
SSRN
收藏 引用
SSRN 2023年
作者: Zhang, Yanqiu Zhang, Hao Xu, Tianya Liu, Jiahe Mu, Jiayang Chen, Rongjie Yang, Jiumin Wang, Peiguo Jian, Xiqi School of Biomedical Engineering and Technology Tianjin Medical University Tianjin300070 China Academy of Medical Engineering and Translational Medicine Tianjin International Joint Research Centre for Neural Engineering Tianjin Key Laboratory of Brain Science and Neural Engineering Tianjin University Tianjin300072 China Haihe Laboratory of Brain-computer Interaction and Human-machine Integration Tianjin300392 China Neurology Department Tianjin Huanhu Hospital Tianjin300350 China Department of Oncology Radiotherapy Cancer Institute Hospital of Tianjin Medical University Tianjin300202 China
Background: Parkinson's disease (PD) is a common neurodegenerative disease. Transcranial magnetoacoustic stimulation (TMAS) is a new therapy that combines a transcranial focused acoustic pressure field with a magn... 详细信息
来源: 评论
Self-Prompting Large Language Models for Zero-Shot Open-Domain QA
arXiv
收藏 引用
arXiv 2022年
作者: Li, Junlong Wang, Jinyuan Zhang, Zhuosheng Zhao, Hai Department of Computer Science and Engineering Shanghai Jiao Tong University China SJTU-Paris Elite Institute of Technology Shanghai Jiao Tong University China School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University China Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University China
Open-Domain Question Answering (ODQA) aims to answer questions without explicitly providing specific background documents. This task becomes notably challenging in a zeroshot setting where no data is available to trai... 详细信息
来源: 评论
Edge Learning for Large-Scale Internet of Things With Task-Oriented Efficient Communication
arXiv
收藏 引用
arXiv 2023年
作者: Xie, Haihui Xia, Minghua Wu, Peiran Wang, Shuai Poor, H. Vincent The School of Electronics and Information Technology Sun Yat-Sen University Guangzhou510006 China The Southern Marine Science and Engineering Guangdong Laboratory Zhuhai519082 China The Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen518055 China The Department of Electrical and Computer Engineering Princeton University PrincetonNJ08544 United States
In the Internet of Things (IoT) networks, edge learning for data-driven tasks provides intelligent applications and services. As the network size becomes large, different users may generate distinct datasets. Thus, to... 详细信息
来源: 评论
Toward Efficient Automated Feature Engineering
arXiv
收藏 引用
arXiv 2022年
作者: Wang, Kafeng Wang, Pengyang Xu, Chengzhong Shenzhen Institute of Advanced Technology Chinese Academy of Sciences University of Chinese Academy of Sciences University of Macau China Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen China State Key Laboratory of Internet of Things for Smart City Department of Computer and Information Science University of Macau China
utomated Feature Engineering (AFE) refers to automatically generate and select optimal feature sets for downstream tasks, which has achieved great success in real-world applications. Current AFE methods mainly focus o... 详细信息
来源: 评论
Difficulty-aware meta-learning for rare disease diagnosis  23rd
Difficulty-aware meta-learning for rare disease diagnosis
收藏 引用
23rd International Conference on Medical Image Computing and computer-Assisted Intervention, MICCAI 2020
作者: Li, Xiaomeng Yu, Lequan Jin, Yueming Fu, Chi-Wing Xing, Lei Heng, Pheng-Ann Department of Computer Science and Engineering The Chinese University of Hong Kong Shatin Hong Kong Department of Radiation Oncology Stanford University Stanford United States Shenzhen Key Laboratory of Virtual Reality and Human Interaction Technology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
Rare diseases have extremely low-data regimes, unlike common diseases with large amount of available labeled data. Hence, to train a neural network to classify rare diseases with a few per-class data samples is very c... 详细信息
来源: 评论