咨询与建议

限定检索结果

文献类型

  • 66 篇 期刊文献
  • 38 篇 会议

馆藏范围

  • 104 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 79 篇 工学
    • 67 篇 计算机科学与技术...
    • 56 篇 软件工程
    • 19 篇 信息与通信工程
    • 15 篇 电气工程
    • 12 篇 生物工程
    • 11 篇 控制科学与工程
    • 7 篇 电子科学与技术(可...
    • 6 篇 化学工程与技术
    • 4 篇 动力工程及工程热...
    • 4 篇 生物医学工程(可授...
    • 3 篇 力学(可授工学、理...
    • 3 篇 机械工程
    • 3 篇 光学工程
    • 3 篇 仪器科学与技术
    • 3 篇 建筑学
    • 3 篇 安全科学与工程
    • 2 篇 土木工程
    • 2 篇 网络空间安全
  • 45 篇 理学
    • 25 篇 数学
    • 12 篇 生物学
    • 10 篇 物理学
    • 6 篇 化学
    • 4 篇 系统科学
    • 2 篇 统计学(可授理学、...
  • 21 篇 管理学
    • 14 篇 管理科学与工程(可...
    • 10 篇 图书情报与档案管...
    • 9 篇 工商管理
  • 6 篇 医学
    • 6 篇 临床医学
    • 4 篇 基础医学(可授医学...
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学
  • 1 篇 法学
  • 1 篇 军事学

主题

  • 5 篇 deep learning
  • 5 篇 image segmentati...
  • 4 篇 semantics
  • 3 篇 reinforcement le...
  • 3 篇 distillation
  • 3 篇 deep neural netw...
  • 3 篇 latent semantic ...
  • 3 篇 evolutionary alg...
  • 2 篇 ultrasonic imagi...
  • 2 篇 generative adver...
  • 2 篇 neural networks
  • 2 篇 contrastive lear...
  • 2 篇 particle swarm o...
  • 2 篇 small object det...
  • 2 篇 feature extracti...
  • 2 篇 synthetic apertu...
  • 2 篇 machine learning
  • 2 篇 federated learni...
  • 2 篇 feature selectio...
  • 2 篇 convolutional ne...

机构

  • 48 篇 hunan provincial...
  • 10 篇 college of infor...
  • 8 篇 hunan provincial...
  • 7 篇 hunan normal uni...
  • 6 篇 college of liber...
  • 5 篇 school of inform...
  • 5 篇 key laboratory o...
  • 5 篇 hunan normal uni...
  • 4 篇 xiangjiang labor...
  • 4 篇 changsha social ...
  • 4 篇 school of electr...
  • 4 篇 school of comput...
  • 4 篇 department of co...
  • 4 篇 school of comput...
  • 4 篇 changchun instit...
  • 3 篇 school of comput...
  • 3 篇 xiangtan univers...
  • 3 篇 school of comput...
  • 3 篇 school of mathem...
  • 3 篇 school of comput...

作者

  • 12 篇 dai jianhua
  • 12 篇 jiang feibo
  • 12 篇 dong li
  • 10 篇 wang kezhi
  • 9 篇 gao xieping
  • 8 篇 yang kun
  • 8 篇 pan cunhua
  • 6 篇 xieping gao
  • 5 篇 peng yubo
  • 5 篇 xiao lin
  • 5 篇 kai hu
  • 4 篇 liu yunlong
  • 4 篇 huang jingui
  • 4 篇 hu kai
  • 4 篇 dai yinglong
  • 3 篇 zou juan
  • 3 篇 yang shengxiang
  • 3 篇 hua ma
  • 3 篇 liu min
  • 3 篇 yinglong dai

语言

  • 81 篇 英文
  • 21 篇 其他
  • 4 篇 中文
检索条件"机构=Hunan Provincial Key Laboratory of Intelligent Computing and Language Processing"
104 条 记 录,以下是91-100 订阅
Distributed resource scheduling for large-scale MEC systems: A multi-agent ensemble deep reinforcement learning with imitation acceleration
arXiv
收藏 引用
arXiv 2020年
作者: Jiang, Feibo Dong, Li Wang, Kezhi Yang, Kun Pan, Cunhua Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing Hunan Normal University Changsha China Key Laboratory of Hunan Province for New Retail Virtual Reality Technology Hunan University of Commerce Changsha China Department of Computer and Information Sciences Northumbria University United Kingdom School of Computer Sciences and Electrical Engineering University of Essex ColchesterCO4 3SQ United Kingdom School of Electronic Engineering and Computer Science Queen Mary University of London LondonE1 4NS United Kingdom
We consider the optimization of distributed resource scheduling to minimize the sum of task latency and energy consumption for all the Internet of things devices (IoTDs) in a large-scale mobile edge computing (MEC) sy... 详细信息
来源: 评论
A Novel Multi-Agent Deep Reinforcement Learning Approach
收藏 引用
Journal of Physics: Conference Series 2021年 第1期1757卷
作者: Dong Yin Zhe Zhao Yinglong Dai Han Long College of Intelligence Science and Technology National University of Defense Technology Changsha 410073 China College of Liberal Arts and Sciences National University of Defense Technology Changsha 410073 China Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing Hunan Normal University Changsha 410081 China
Borrowing the power of deep neural networks, deep reinforcement learning achieved big success in games, and it becomes a popular method to solve the sequential decision-making problems. However, the success is still r...
来源: 评论
Stacked auto encoder based Deep Reinforcement Learning for online resource scheduling in large-scale MEC networks
arXiv
收藏 引用
arXiv 2020年
作者: Jiang, Feibo Wang, Kezhi Dong, Li Pan, Cunhua Yang, Kun Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing Hunan Normal University Changsha China Department of Computer and Information Sciences Northumbria University United Kingdom Key Laboratory of Hunan Province for New Retail Virtual Reality Technology Hunan University of Commerce Changsha China School of Electronic Engineering and Computer Science Queen Mary University of London LondonE1 4NS United Kingdom School of Computer Sciences and Electrical Engineering University of Essex ColchesterCO4 3SQ United Kingdom University of Electronic Science and Technology of China Chengdu China
An online resource scheduling framework is proposed for minimizing the sum of weighted task latency for all the mobile users, by optimizing offloading decision, transmission power, and resource allocation in the mobil... 详细信息
来源: 评论
Dynamic maintenance of decision rules for decision attribute values’ changing  25th
Dynamic maintenance of decision rules for decision attribute...
收藏 引用
25th International Conference on Neural Information processing, ICONIP 2018
作者: Wang, Yingyao Dai, Jianhua Shi, Hong School of Computer Science and Technology Tianjin University Tianjin300350 China Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing College of Information Science and Engineering Hunan Normal University Changsha410081 China
Rule induction method based on rough set theory (RST) which can generate a minimal set of decision rules by using attribute reduction and approximations has received much attention recently. In real-life, the variatio... 详细信息
来源: 评论
Label distribution learning based on ensemble neural networks  25th
Label distribution learning based on ensemble neural network...
收藏 引用
25th International Conference on Neural Information processing, ICONIP 2018
作者: Zhai, Yansheng Dai, Jianhua Shi, Hong School of Computer Science and Technology Tianjin University Tianjin300350 China Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing College of Information Science and Engineering Hunan Normal University Changsha410081 China
Label distribution learning (LDL), as an extension of multi-label learning, is a new arising machine learning technique to deal with label ambiguity problems. The maximum entropy model is commonly used in label distri... 详细信息
来源: 评论
Ai driven heterogeneous MEC system for dynamic environment - Challenges and solutions
arXiv
收藏 引用
arXiv 2020年
作者: Jiang, Feibo Wang, Kezhi Dong, Li Pan, Cunhua Xu, Wei Yang, Kun Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing Hunan Normal University Changsha China department of Computer and Information Sciences Northumbria University United Kingdom Key Laboratory of Hunan Province for New Retail Virtual Reality Technology Hunan University of Commerce Changsha China School of Electronic Engineering and Computer Science Queen Mary University of London LondonE1 4NS United Kingdom NCRL Southeast University Nanjing China School of Computer Sciences and Electrical Engineering University of Essex ColchesterCO4 3SQ United Kingdom University of Electronic Science and Technology of China Chengdu China
—By taking full advantage of computing, Communication and Caching (3C) resources at the network edge, Mobile Edge computing (MEC) is envisioned as one of the key enablers for the next generation network and services.... 详细信息
来源: 评论
Systematic Resource Allocation in Cloud RAN with Caching as a Service under Two Timescales
Systematic Resource Allocation in Cloud RAN with Caching as ...
收藏 引用
作者: Tang, Jianhua Quek, Tony Q. S. Chang, Tsung-Hui Shim, Byonghyo Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing College of Information Science and Engineering Hunan Normal University Changsha410081 China Institute of New Media and Communications Department of Electrical and Computer Engineering Seoul National University Seoul08826 Korea Republic of Information Systems Technology and Design Pillar Singapore University of Technology and Design Singapore487372 Singapore Department of Electronic Engineering Kyung Hee University Yongin17104 Korea Republic of School of Science and Engineering Chinese University of Hong Kong Shenzhen518172 China Shenzhen Research Institute of Big Data Shenzhen518172 China Department of Electrical and Computer Engineering Institute of New Media and Communications Seoul National University Seoul08826 Korea Republic of
Recently, cloud radio access network (C-RAN) with caching as a service (CaaS) was proposed to merge the functionalities of communication, computing, and caching (CCC) together. In this paper, we dissect the interactio... 详细信息
来源: 评论
UWB SAR image segmentation algorithm based on polynomial analysis of statistical distribution
UWB SAR image segmentation algorithm based on polynomial ana...
收藏 引用
Asian and Pacific Conference on Synthetic Aperture Radar (APSAR)
作者: Wang Yuming Jin Tian Luo Chaopeng College of Information Science and Engineering Hunan Provincial Key Laboratory of Intelligent Computhing and Language Information Processing Science and Technology on Near-Surface Detection Laboratory Hunan Normal University Changsha R.P.China College of Electronic Science and Technology Science and Technology on Near-Surface Detection Laboratory National University of Defense Technology Changsha R.P.China Science and Technology on Near-Surface Detection Laboratory Wuxi China
Aimed at the segmentation problem of ultrawideband synthetic aperture radar (UWB SAR) image, a novel algorithm based on polynomial analysis of statistical distribution is proposed in this letter. Firstly, we estimate ... 详细信息
来源: 评论
Insight-HXMT and GECAM-C observations of the brightest-of-all-time GRB 221009A
arXiv
收藏 引用
arXiv 2023年
作者: An, Zheng-Hua Antier, S. Bi, Xing-Zi Bu, Qing-Cui Cai, Ce Cao, Xue-Lei Camisasca, Anna-Elisa Chang, Zhi Chen, Gang Chen, Li Chen, Tian-Xiang Chen, Wen Chen, Yi-Bao Chen, Yong Chen, Yu-Peng Coughlin, Michael W. Cui, Wei-Wei Dai, Zi-Gao Hussenot-Desenonges, T. Du, Yan-Qi Du, Yuan-Yuan Du, Yun-Fei Fan, Cheng-Cheng Frontera, Filippo Gao, He Gao, Min Ge, Ming-Yu Gong, Ke Gu, Yu-Dong Guan, Ju Guo, Dong-Ya Guo, Zhi-Wei Guidorzi, Cristiano Han, Da-Wei He, Jian-Jian He, Jun-Wang Hou, Dong-Jie Huang, Yue Huo, Jia Ji, Zhen Jia, Shu-Mei Jiang, Wei-Chun Kann, David Alexander Klotz, A. Kong, Ling-Da Lan, Lin Li, An Li, Bing Li, Chao-Yang Li, Cheng-Kui Li, Gang Li, Mao-Shun Li, Ti-Pei Li, Wei Li, Xiao-Bo Li, Xin-Qiao Li, Xu-Fang Li, Yan-Guo Li, Zheng-Wei Liang, Jing Liang, Xiao-Hua Liao, Jin-Yuan Lin, Lin Liu, Cong-Zhan Liu, He-Xin Liu, Hong-Wei Liu, Jia-Cong Liu, Xiao-Jing Liu, Ya-Qing Liu, Yu-Rong Lu, Fang-Jun Lu, Hong Lu, Xue-Feng Luo, Qi Luo, Tao Ma, Bin-Yuan Ma, Fu-Li Ma, Rui-Can Ma, Xiang Maccary, Romain Mao, Ji-Rong Meng, Bin Nie, Jian-Yin Orlandini, Mauro Ou, Ge Peng, Jing-Qiang Peng, Wen-Xi Qiao, Rui Qu, Jin-Lu Ren, Xiao-Qin Shi, Jing-Yan Shi, Qi Song, Li-Ming Song, Xin-Ying Su, Ju Sun, Gong-Xing Sun, Liang Sun, Xi-Lei Tan, Wen-Jun Tan, Ying Tao, Lian Tuo, You-Li Turpin, Damien Wang, Jin-Zhou Wang, Chen Wang, Chen-Wei Wang, Hong-Jun Wang, Hui Wang, Jin Wang, Ling-Jun Wang, Peng-Ju Wang, Ping Wang, Wen-Shuai Wang, Xiang-Yu Wang, Xi-Lu Wang, Yu-Sa Wang, Yue Wen, Xiang-Yang Wu, Bo-Bing Wu, Bai-Yang Wu, Hong Xiao, Sheng-Hui Xiao, Shuo Xiao, Yun-Xiang Xie, Sheng-Lun Xiong, Shao-Lin Xiong, Sen-Lin Xu, Dong Xu, He Xu, Yan-Jun Xu, Yan-Bing Xu, Ying-Chen Xu, Yu-Peng Xue, Wang-Chen Yang, Sheng Yang, Yan-Ji Yang, Zi-Xu Ye, Wen-Tao Yi, Qi-Bin Yi, Shu-Xu Yin, Qian-Qing You, Yuan Yu, Yun-Wei Yu, Wei Yu, Wen-Hui Zeng, Ming Zhang, Bing Zhang, Bin-Bin Zhang, Da-Li Zhang, Fan Zhang, Hong-Mei Zhang, Juan Key Laboratory of Particle Astrophysics Institute of High Energy Physics Chinese Academy of Sciences 19B Yuquan Road Beijing100049 China Institut für Astronomie und Astrophysik Kepler Center for Astro and Particle Physics Eberhard Karls Universität Sand 1 Tübingen72076 Germany College of Physics Hebei Key Laboratory of Photophysics Research and Application Hebei Normal University Hebei Shijiazhuang050024 China Department of Physics and Earth Science University of Ferrara Via Saragat 1 Ferrara44122 Italy Department of Astronomy Beijing Normal University Beijing100875 China CAS Key Laboratory for Research in Galaxies and Cosmology Department of Astronomy University of Science and Technology of China Hefei230026 China Department of Astronomy Tsinghua University Beijing100084 China Southwest Jiaotong University Chengdu610092 China INAF Osservatorio di Astrofisica e Scienza dello Spazio di Bologna Via Piero Gobetti 101 Bologna40129 Italy University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing100049 China College of physics Sciences Technology Hebei University No. 180 Wusi Dong Road Lian Chi District Hebei Baoding071002 China INFN - Sezione di Ferrara Via Saragat 1 Ferrara44122 Italy Physics and Space Science College China West Normal University China Yunnan Observatories Chinese Academy of Sciences Yunnan Province Kunming650011 China Key Laboratory of Space Astronomy and Technology National Astronomical Observatories Chinese Academy of Sciences Beijing100012 China School of Astronomy and Space Science Nanjing University Nanjing210093 China School of Physics and Optoelectronics Xiangtan University Yuhu District Hunan Xiangtan411105 China Guizhou Provincial Key Laboratory of Radio Astronomy and Data Processing Guizhou Normal University Guiyang550001 China Institute of Astrophysics Central China Normal University Wuhan430079 China Nevada Center for Astrophysics Department of Physics and Astronomy University of
GRB 221009A is the brightest gamma-ray burst ever detected since the discovery of this kind of energetic explosions. However, an accurate measurement of the prompt emission properties of this burst is very challenging... 详细信息
来源: 评论
Deep learning based joint resource scheduling algorithms for hybrid MEC networks
arXiv
收藏 引用
arXiv 2019年
作者: Jiang, Feibo Wang, Kezhi Dong, Li Pan, Cunhua Xu, Wei Yang, Kun Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing Hunan Normal University Changsha China Department of Computer and Information Sciences Northumbria University United Kingdom Key Laboratory of Hunan Province for New Retail Virtual Reality Technology Hunan University of Technology and Business Changsha China School of Electronic Engineering and Computer Science Queen Mary University of London LondonE1 4NS United Kingdom NCRL Southeast University Nanjing China School of Computer Technology and Engineering Changchun Institute of Technology Changchun China School of Computer Sciences and Electrical Engineering University of Essex ColchesterCO4 3SQ United Kingdom
In this paper, we consider a hybrid mobile edge computing (H-MEC) platform, which includes ground stations (GSs), ground vehicles (GVs) and unmanned aerial vehicle (UAVs), all with mobile edge cloud installed to enabl... 详细信息
来源: 评论