咨询与建议

限定检索结果

文献类型

  • 66 篇 期刊文献
  • 38 篇 会议

馆藏范围

  • 104 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 79 篇 工学
    • 67 篇 计算机科学与技术...
    • 56 篇 软件工程
    • 19 篇 信息与通信工程
    • 15 篇 电气工程
    • 12 篇 生物工程
    • 11 篇 控制科学与工程
    • 7 篇 电子科学与技术(可...
    • 6 篇 化学工程与技术
    • 4 篇 动力工程及工程热...
    • 4 篇 生物医学工程(可授...
    • 3 篇 力学(可授工学、理...
    • 3 篇 机械工程
    • 3 篇 光学工程
    • 3 篇 仪器科学与技术
    • 3 篇 建筑学
    • 3 篇 安全科学与工程
    • 2 篇 土木工程
    • 2 篇 网络空间安全
  • 45 篇 理学
    • 25 篇 数学
    • 12 篇 生物学
    • 10 篇 物理学
    • 6 篇 化学
    • 4 篇 系统科学
    • 2 篇 统计学(可授理学、...
  • 21 篇 管理学
    • 14 篇 管理科学与工程(可...
    • 10 篇 图书情报与档案管...
    • 9 篇 工商管理
  • 6 篇 医学
    • 6 篇 临床医学
    • 4 篇 基础医学(可授医学...
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学
  • 1 篇 法学
  • 1 篇 军事学

主题

  • 5 篇 deep learning
  • 5 篇 image segmentati...
  • 4 篇 semantics
  • 3 篇 reinforcement le...
  • 3 篇 distillation
  • 3 篇 deep neural netw...
  • 3 篇 latent semantic ...
  • 3 篇 evolutionary alg...
  • 2 篇 ultrasonic imagi...
  • 2 篇 generative adver...
  • 2 篇 neural networks
  • 2 篇 contrastive lear...
  • 2 篇 particle swarm o...
  • 2 篇 small object det...
  • 2 篇 feature extracti...
  • 2 篇 synthetic apertu...
  • 2 篇 machine learning
  • 2 篇 federated learni...
  • 2 篇 feature selectio...
  • 2 篇 convolutional ne...

机构

  • 48 篇 hunan provincial...
  • 10 篇 college of infor...
  • 8 篇 hunan provincial...
  • 7 篇 hunan normal uni...
  • 6 篇 college of liber...
  • 5 篇 school of inform...
  • 5 篇 key laboratory o...
  • 5 篇 hunan normal uni...
  • 4 篇 xiangjiang labor...
  • 4 篇 changsha social ...
  • 4 篇 school of electr...
  • 4 篇 school of comput...
  • 4 篇 department of co...
  • 4 篇 school of comput...
  • 4 篇 changchun instit...
  • 3 篇 school of comput...
  • 3 篇 xiangtan univers...
  • 3 篇 school of comput...
  • 3 篇 school of mathem...
  • 3 篇 school of comput...

作者

  • 12 篇 dai jianhua
  • 12 篇 jiang feibo
  • 12 篇 dong li
  • 10 篇 wang kezhi
  • 9 篇 gao xieping
  • 8 篇 yang kun
  • 8 篇 pan cunhua
  • 6 篇 xieping gao
  • 5 篇 peng yubo
  • 5 篇 xiao lin
  • 5 篇 kai hu
  • 4 篇 liu yunlong
  • 4 篇 huang jingui
  • 4 篇 hu kai
  • 4 篇 dai yinglong
  • 3 篇 zou juan
  • 3 篇 yang shengxiang
  • 3 篇 hua ma
  • 3 篇 liu min
  • 3 篇 yinglong dai

语言

  • 81 篇 英文
  • 21 篇 其他
  • 4 篇 中文
检索条件"机构=Hunan Provincial Key Laboratory of Intelligent Computing and Language Processing"
104 条 记 录,以下是51-60 订阅
GTK:A Hybrid-Search Algorithm of Top-Rank-k Frequent Patterns Based on Greedy Strategy
收藏 引用
Computers, Materials & Continua 2020年 第6期63卷 1445-1469页
作者: Yuhang Long Wensheng Tang Bo Yang Xinyu Wang Hua Ma Hang Shi Xueyu Cheng Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing Hunan Normal UniversityChangsha410081China College of Information Science and Engineering Hunan UniversityChangsha410082China Clayton State University MorrowGA 30260USA
Currently,the top-rank-k has been widely applied to mine frequent patterns with a rank not exceeding *** the existing algorithms,although a level-wise-search could fully mine the target patterns,it usually leads to th... 详细信息
来源: 评论
Feature Selection Based on Consistent Granulation
SSRN
收藏 引用
SSRN 2024年
作者: Yang, Tian Shen, Shuo Deng, Jinsheng Liang, Jie Qian, Yuhua Dai, Jianhua Hunan Provincial Laboratory of Intelligent Computing and Language Information Processing Hunan Normal University Hunan Changsha410081 China College of Advanced Interdisciplinary Studies National University of Defense Technology Changsha410073 China Institute of Big Data Science and Industry Shanxi university Shanxi Taiyuan030006 China
Classifying large-scale data is a challenging task in machine learning. Feature selection and feature construction can improve the classification performances of classifiers. However, existing feature selections strug... 详细信息
来源: 评论
An Unsupervised Malicious Web Request Detection based on Transformer and Contrastive Learning
收藏 引用
IEEE Transactions on Network and Service Management 2025年
作者: He, Shiming Zhang, Ying Liang, Diqing Sharma, Pradip Kumar Changsha University of Science and Technology School of Computer Science and Technology Hunan Provincial Key Laboratory of Intelligent Processing of Big Data on Transportation Changsha410114 China University of Aberdeen Department of Computing Science AberdeenAB24 3UE United Kingdom
The World Wide Web (Web) is a crucial part of the Internet. Web attacks are becoming more and more serious and complex. Malicious Web request detection aims to rapidly and accurately identify abnormal attacks on the n... 详细信息
来源: 评论
Modality Unified Attack for Omni-Modality Person Re-Identification
arXiv
收藏 引用
arXiv 2025年
作者: Bian, Yuan Liu, Min Yi, Yunqi Wang, Xueping Ma, Yunfeng Wang, Yaonan the College of Electrical and Information Engineering Hu nan University National Engineering Research Center of Robot Vi sual Perception and Control Technology Hunan Changsha China the College of Information Science and Engineering Hunan Normal University Hunan Provincial Key Laboratory of Intel ligent Computing and Language Information Processing Hunan Changsha China
Deep learning based person re-identification (reid) models have been widely employed in surveillance systems. Recent studies have demonstrated that black-box single-modality and cross-modality re-id models are vulnera... 详细信息
来源: 评论
Interpretable Saliency Map for Deep Reinforcement Learning
Interpretable Saliency Map for Deep Reinforcement Learning
收藏 引用
2020 International Conference on Computer Big Data and Artificial Intelligence, ICCBDAI 2020
作者: Zheng, Hong Dai, Yinglong Yu, Fumin Hu, Yuezhen School of Physics and Electronics Hunan Normal University Changsha410081 China College of Liberal Arts and Sciences National University of Defense Technology Changsha410073 China Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing Hunan Normal University Changsha410081 China
Deep reinforcement learning (deep RL) achieved big successes with the advantage of deep learning techniques, while it also introduces the disadvantage of the model interpretability. Bad interpretability is a great obs... 详细信息
来源: 评论
Large Generative Model-assisted Talking-face Semantic Communication System
arXiv
收藏 引用
arXiv 2024年
作者: Jiang, Feibo Tu, Siwei Dong, Li Pan, Cunhua Wang, Jiangzhou You, Xiaohu Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing Hunan Normal University Changsha China School of Information Science and Engineering Hunan Normal University Changsha China Changsha Social Laboratoryof Artificial Intelligence Hunan University of Technology and Business Changsha China The National Mobile Communications Research Laboratory Southeast University Nanjing210096 China The National Mobile Communications Research Laboratory Southeast University Nanjing China The Purple Mountain Laboratories Nanjing China
The rapid development of generative Artificial Intelligence (AI) continually unveils the potential of Semantic Communication (SemCom). However, current talking-face SemCom systems still encounter challenges such as lo... 详细信息
来源: 评论
Adaptive zeroing neural dynamics-based cascaded control scheme for trajectory tracking of wheeled unmanned ground vehicles
收藏 引用
Neurocomputing 2025年 649卷
作者: Lin Xiao Wenyuan Huang Qiuyue Zuo Linju Li Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing MOE-LCSM Hunan Normal University Changsha Hunan 410081 China
With fast convergence and high accuracy, zeroing neural dynamics (ZND) is widely used in control applications, particularly in robotic trajectory tracking. This paper focuses on the trajectory tracking of wheeled unma...
来源: 评论
Simple and Efficient Knowledge Graph Attention Network for Recommendation
Simple and Efficient Knowledge Graph Attention Network for R...
收藏 引用
Cyber-Physical Social Intelligence (ICCSI), International Conference on
作者: Yangding Li Shaobin Fu Hao Feng Yangyang Zeng Jinghao Wang Zhihao Jiang Lvyun Zhang School of Information Science and Engineering Hunan Provincial Laboratory of Intelligent Computing and Language Information Processing Hunan Normal University Changsha China Shenzhen Lazada Software Technology Company Limited Shenzhen China School of Big Data and Computer Science Hechi University Guangxi China
Existing methods for modeling recommendation systems based on knowledge graphs include embedding-based, pathbased, and propagation-based methods. The embedding-based approach is flexible but more suitable for intra-gr...
来源: 评论
Joint Optimization of Deployment and Trajectory in UAV and IRS-Assisted IoT Data Collection System
arXiv
收藏 引用
arXiv 2022年
作者: Dong, Li Liu, Zhibin Jiang, Feibo Wang, Kezhi Changsha Social Laboratory of Artificial Intelligence Hunan University of Technology and Business Changsha China Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing Hunan Normal University Changsha China The Department of Computer and Information Sciences Northumbria University United Kingdom
Unmanned aerial vehicles (UAV) can be applied in many Internet of Things (IoT) systems, e.g., smart farms, as a data collection platform. However, the UAV-IoT wireless channels may be occasionally blocked by trees or ... 详细信息
来源: 评论
Controlled-source electromagnetic signal detection using a hybrid deep learning model: Convolutional and long short-term memory neural networks
收藏 引用
Computers and Geosciences 2025年 204卷
作者: Liu, Yecheng Li, Diquan Li, Jin Hu, Yanfang Liu, Zijie Zhang, Xian School of Geosciences and Info-Physics Central South University Changsha410083 China Key Laboratory of Metallogenic Prediction of Non-Ferrous Metals and Geological Environment Monitor Ministry of Education Central South University Changsha410083 China Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing College of Information Science and Engineering Hunan Normal University Changsha410081 China Hunan Provincial Key Laboratory of Finance & Economics Big Data Science and Technology School of Information Technology and Management Hunan University of Finance and Economics Changsha410205 China
Controlled-source electromagnetic (CSEM) method using a periodic transmitted signal source suppresses random noise by superimposing and averaging the recorded signal over multiple periods. However, it still faces grea... 详细信息
来源: 评论