咨询与建议

限定检索结果

文献类型

  • 14 篇 期刊文献
  • 9 篇 会议

馆藏范围

  • 23 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 18 篇 工学
    • 9 篇 计算机科学与技术...
    • 6 篇 软件工程
    • 5 篇 测绘科学与技术
    • 4 篇 生物医学工程(可授...
    • 3 篇 信息与通信工程
    • 3 篇 控制科学与工程
    • 3 篇 生物工程
    • 2 篇 光学工程
    • 2 篇 仪器科学与技术
    • 2 篇 环境科学与工程(可...
    • 1 篇 电气工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 化学工程与技术
  • 9 篇 理学
    • 5 篇 生物学
    • 2 篇 地球物理学
    • 1 篇 数学
    • 1 篇 物理学
    • 1 篇 化学
    • 1 篇 系统科学
    • 1 篇 统计学(可授理学、...
  • 3 篇 医学
    • 2 篇 临床医学
    • 1 篇 特种医学
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...
  • 1 篇 农学
    • 1 篇 作物学

主题

  • 3 篇 self-supervised ...
  • 3 篇 hyperspectral se...
  • 3 篇 solar-induced fl...
  • 2 篇 deep learning
  • 2 篇 visualization
  • 2 篇 remote sensing
  • 2 篇 machine learning
  • 2 篇 radiative transf...
  • 1 篇 quantitative ana...
  • 1 篇 tissue
  • 1 篇 friction
  • 1 篇 biology
  • 1 篇 imaging spectrom...
  • 1 篇 smartphones
  • 1 篇 spectral discrim...
  • 1 篇 photointerpretat...
  • 1 篇 force measuremen...
  • 1 篇 image segmentati...
  • 1 篇 nonprehensile ma...
  • 1 篇 microscopy

机构

  • 2 篇 japan adv inst s...
  • 2 篇 forschungszentru...
  • 2 篇 forschungszentru...
  • 2 篇 ibg-1: biotechno...
  • 2 篇 forschungszentru...
  • 2 篇 rwth aachen univ...
  • 2 篇 jülich supercomp...
  • 2 篇 ias-8: data anal...
  • 2 篇 ias-8: data anal...
  • 2 篇 institute of bio...
  • 1 篇 german aerosp ct...
  • 1 篇 institute for au...
  • 1 篇 jülich supercomp...
  • 1 篇 oberpfaffenhofen
  • 1 篇 forschungszentru...
  • 1 篇 univ zurich dept...
  • 1 篇 institute of bio...
  • 1 篇 machine learning...
  • 1 篇 institute of bio...
  • 1 篇 german aerosp ct...

作者

  • 13 篇 scharr hanno
  • 5 篇 rademske patrick
  • 5 篇 buffat jim
  • 5 篇 rascher uwe
  • 4 篇 carmona emiliano
  • 4 篇 maier stefan
  • 4 篇 pato miguel
  • 4 篇 alonso kevin
  • 4 篇 auer stefan
  • 3 篇 seiffarth johann...
  • 3 篇 chong nak young
  • 3 篇 schnepf andrea
  • 3 篇 mueller rupert
  • 3 篇 elibol armagan
  • 3 篇 riedel morris
  • 3 篇 hanno scharr
  • 2 篇 nöh katharina
  • 2 篇 kaile kacie
  • 2 篇 gao ziyan
  • 2 篇 miguel pato

语言

  • 19 篇 英文
  • 4 篇 其他
  • 1 篇 中文
检索条件"机构=IAS-8: Data Analytics and Machine Learning"
23 条 记 录,以下是11-20 订阅
排序:
ROBUST APPROXIMATE CHARACTERIZATION OF SINGLE-CELL HETEROGENEITY IN MICROBIAL GROWTH
arXiv
收藏 引用
arXiv 2024年
作者: Paul, Richard Seiffarth, Johannes Scharr, Hanno Nöh, Katharina IAS-8: Data Analytics and Machine Learning Forschungszentrum Jülich GmbH Jülich Germany IBG-1: Biotechnology Forschungszentrum Jülich GmbH Jülich Germany RWTH Aachen University Aachen Germany
Live-cell microscopy allows to go beyond measuring average features of cellular populations to observe, quantify and explain biological heterogeneity. Deep learning-based instance segmentation and cell tracking form t... 详细信息
来源: 评论
DEEP learning BASED PREDICTION OF SUN-INDUCED FLUORESCENCE FROM HYPLANT IMAGERY
DEEP LEARNING BASED PREDICTION OF SUN-INDUCED FLUORESCENCE F...
收藏 引用
IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
作者: Buffat, Jim Pato, Miguel Alonso, Kevin Auer, Stefan Carmona, Emiliano Maier, Stefan Mueller, Rupert Rademske, Patrick Rascher, Uwe Scharr, Hanno Forschungszentrum Julich GmbH Inst Bio & Geosci IBG 2 Plant Sci Julich Germany German Aerosp Ctr DLR Remote Sensing Technol Inst Earth Observat Ctr Oberpfaffenhofen Germany European Space Agcy ESA RHEA Grp I-00044 Frascati Italy Forschungszentrum Julich GmbH Inst Adv Simulat IAS 8 Data Analyt & Machine Learning Julich Germany
The retrieval of sun-induced fluorescence (SIF) from hyperspectral imagery is an ill-posed problem that has been tackled in different ways. We present a novel retrieval method combining semi-supervised deep learning w... 详细信息
来源: 评论
Deep learning algorithms to classify Fitzpatrick skin types for smartphone based NIRS imaging device  15
Deep learning algorithms to classify Fitzpatrick skin types ...
收藏 引用
Next-Generation Spectroscopic Technologies XV 2023
作者: Leizaola, Daniela Sobhan, Masrur Kaile, Kacie Mondal, Ananda Mohan Godavarty, Anuradha Optical Imaging Laboratory Department of Biomedical Engineering Florida International University 10555 W Flagler St MiamiFL33174 United States Machine Learning and Data Analytics Group Knight Foundation School Computing and Information Sciences Florida International University 11200 SW 8th St MiamiFL33199 United States
Non-contact imaging modalities for monitoring wound health could supplement the current standard which is a visual inspection by clinicians. Recently, a smartphone oxygenation tool (SPOT) has been developed for physio... 详细信息
来源: 评论
machine learning algorithms to classify Fitzpatrick skin types during tissue oxygenation mapping
Machine learning algorithms to classify Fitzpatrick skin typ...
收藏 引用
Clinical and Translational Biophotonics, Translational 2022
作者: Kaile, Kacie Sobhan, Masrur Mondal, Ananda Godavarty, Anuradha Department of Biomedical Engineering Optical Imaging Laboratory Florida International University 10555 West Flagler St MiamiFL33174 United States Machine Learning and Data Analytics Group Knight Foundation School of Computing and Information Sciences Florida International University 11200 SW 8th St MiamiFL33199 United States
A machine learning approach is implemented to label different skin tones towards melanin correction of tissue oxygenation maps, when using a smartphone based near-infrared (NIR) imaging device. © 2022 Optica Publ... 详细信息
来源: 评论
Robust Approximate Characterization of Single-Cell Heterogeneity in Microbial Growth
Robust Approximate Characterization of Single-Cell Heterogen...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Richard D. Paul Johannes Seiffarth Hanno Scharr Katharina Nöh IAS-8: Data Analytics and Machine Learning Forschungszentrum Jülich GmbH Jülich Germany IBG-1: Biotechnology Forschungszentrum Jülich GmbH Jülich Germany Computational Systems Biotechnology (AVT.CSB) RWTH Aachen University Aachen Germany
Live-cell microscopy allows to go beyond measuring average features of cellular populations to observe, quantify and explain biological heterogeneity. Deep learning-based instance segmentation and cell tracking form t... 详细信息
来源: 评论
FAST machine learning SIMULATOR OF AT-SENSOR RADIANCES FOR SOLAR-INDUCED FLUORESCENCE RETRIEVAL WITH DESIS AND HYPLANT
FAST MACHINE LEARNING SIMULATOR OF AT-SENSOR RADIANCES FOR S...
收藏 引用
IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
作者: Pato, Miguel Alonso, Kevin Auer, Stefan Buffat, Jim Carmona, Emiliano Maier, Stefan Mueller, Rupert Rademske, Patrick Rascher, Uwe Scharr, Hanno German Aerosp Ctr DLR Earth Observat Ctr Remote Sensing Technol Inst Oberpfaffenhofen Germany European Space Agcy ESA RHEA Grp Largo Galileo Galilei I-00044 Frascati Italy Forschungszentrum Julich GmbH Inst Bio & Geosci IBG2 Plant Sci Julich Germany Forschungszentrum Julich GmbH Inst Adv Simulat IAS8 Data Analyt & Machine Learning Julich Germany
In many remote sensing applications the measured radiance needs to be corrected for atmospheric effects to study surface properties such as reflectance, temperature or emission features. The correction often applies r... 详细信息
来源: 评论
Retrieval of sun-induced plant fluorescence in the O2-A absorption band from DESIS imagery
arXiv
收藏 引用
arXiv 2024年
作者: Buffat, Jim Pato, Miguel Alonso, Kevin Auer, Stefan Carmona, Emiliano Maier, Stefan Müller, Rupert Rademske, Patrick Rascher, Uwe Scharr, Hanno Forschungszentrum Jülich GmbH Institute of Bio- and Geosciences IBG-2: Plant Sciences Jülich Germany Oberpfaffenhofen Germany Largo Galileo Galilei Frascati00044 Italy Forschungszentrum Jülich GmbH Institute of Advanced Simulations IAS-8: Data Analytics and Machine Learning Jülich Germany
We provide the first method allowing to retrieve spaceborne SIF maps at 30 m ground resolution with a strong correlation (r2 = 0.6) to high-quality airborne estimates of sun-induced fluorescence (SIF). SIF estimates c... 详细信息
来源: 评论
Abdominal multi-organ segmentation using multi-scale and context-aware neural networks
收藏 引用
IFAC JOURNAL OF SYSTEMS AND CONTROL 2024年 27卷
作者: Song, Yuhan Elibol, Armagan Chong, Nak Young Japan Adv Inst Sci & Technol Sch Informat Sci Nomi 9231292 Japan Forschungszentrum Julich Inst Adv Simulat IAS 8 Data Analyt & Machine Learning D-52428 Julich Germany
Recent advancements in AI have significantly enhanced smart diagnostic methods, bringing us closer to achieving end -to -end diagnosis. Ultrasound image segmentation plays a crucial role in this diagnostic process. An... 详细信息
来源: 评论
Spatio-spectral deconvolution for high resolution spectral imaging with an application to the estimation of sun-induced fluorescence
收藏 引用
REMOTE SENSING OF ENVIRONMENT 2021年 267卷 112718-112718页
作者: Scharr, Hanno Rademske, Patrick Alonso, Luis Cogliati, Sergio Rascher, Uwe Forschungszentrum Julich Inst Bio & Geosci IBG IBG 2 Plant Sci D-52425 Julich Germany Forschungszentrum Julich Inst Adv Simulat IAS IAS 8 Data Analyt & Machine Learning D-52425 Julich Germany Univ Valencia Image Proc Lab Valencia Spain Univ Milano Bicocca DISAT Remote Sensing Environm Dynam Lab Pzza Sci 1 I-20126 Milan Italy
We propose a signal deconvolution procedure for imaging spectrometer data, where a measured point spread function (PSF) is deconvolved itself before being used for deconvolution of the signal. We evaluate the effectiv... 详细信息
来源: 评论
Deep learning Based Prediction of Sun-Induced Fluorescence from Hyplant Imagery
Deep Learning Based Prediction of Sun-Induced Fluorescence f...
收藏 引用
IEEE International Symposium on Geoscience and Remote Sensing (IGARSS)
作者: Jim Buffat Miguel Pato Kevin Alonso Stefan Auer Emiliano Carmona Stefan Maier Rupert Müller Patrick Rademske Uwe Rascher Hanno Scharr Forschungszentrum Jülich GmbH Institute of Bio- and Geosciences IBG-2: Plant Sciences Jülich Germany German Aerospace Center (DLR) Earth Observation Center Remote Sensing Technology Institute Oberpfaffenhofen Germany RHEA Group c/o European Space Agency (ESA) Frascati Italy Forschungszentrum Jülich GmbH Institute of Advanced Simulations IAS-8: Data Analytics and Machine Learning Jülich Germany
The retrieval of sun-induced fluorescence (SIF) from hyper-spectral imagery is an ill-posed problem that has been tackled in different ways. We present a novel retrieval method combining semi-supervised deep learning ...
来源: 评论