咨询与建议

限定检索结果

文献类型

  • 3 篇 期刊文献
  • 2 篇 会议

馆藏范围

  • 5 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 5 篇 工学
    • 5 篇 计算机科学与技术...
    • 4 篇 软件工程
    • 2 篇 信息与通信工程
    • 1 篇 电气工程
    • 1 篇 航空宇航科学与技...
    • 1 篇 生物工程
    • 1 篇 安全科学与工程
  • 3 篇 管理学
    • 3 篇 图书情报与档案管...
  • 2 篇 理学
    • 1 篇 数学
    • 1 篇 生物学
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 1 篇 wetlands
  • 1 篇 behavioral resea...
  • 1 篇 formal concept a...
  • 1 篇 classification (...

机构

  • 1 篇 iteg and knowled...
  • 1 篇 tu dresden
  • 1 篇 university of wü...
  • 1 篇 gesis
  • 1 篇 university of ka...
  • 1 篇 pulse lab jakart...
  • 1 篇 iteg university ...
  • 1 篇 knowledge and da...
  • 1 篇 knowledge & data...
  • 1 篇 data mining and ...
  • 1 篇 university of ko...
  • 1 篇 university of ka...
  • 1 篇 tilburg universi...

作者

  • 4 篇 stumme gerd
  • 2 篇 kibanov mark
  • 2 篇 hotho andreas
  • 2 篇 atzmueller marti...
  • 1 篇 singer philipp
  • 1 篇 strohmaier marku...
  • 1 篇 mueller juergen
  • 1 篇 becker martin
  • 1 篇 lee jong gun
  • 1 篇 amin imaduddin
  • 1 篇 doerfel stephan
  • 1 篇 scholz christoph
  • 1 篇 zoller daniel
  • 1 篇 niebler thomas
  • 1 篇 illig jens
  • 1 篇 marx maximilian
  • 1 篇 hanika tom

语言

  • 5 篇 英文
检索条件"机构=ITeG and Knowledge and Data Engineering Group"
5 条 记 录,以下是1-10 订阅
排序:
On the predictability of talk attendance at academic conferences (Extended Abstract)  16
On the predictability of talk attendance at academic confere...
收藏 引用
16th Workshops on Learning, knowledge, Adaptation, LWA 2014: knowledge Discovery, data Mining and Machine Learning, KDML 2014, Information Retrieval, IR 2014 and knowledge Management, FGWM 2014
作者: Scholz, Christoph Illig, Jens Atzmueller, Martin Stumme, Gerd University of Kassel ITeG Research Center Knowledge and Data Engineering Group Wilhelmshöher Allee 73 Kassel Germany
来源: 评论
Evaluating assumptions about social tagging: A study of user behavior in BibSonomy  16
Evaluating assumptions about social tagging: A study of user...
收藏 引用
16th Workshops on Learning, knowledge, Adaptation, LWA 2014: knowledge Discovery, data Mining and Machine Learning, KDML 2014, Information Retrieval, IR 2014 and knowledge Management, FGWM 2014
作者: Doerfel, Stephan Zoller, Daniel Singer, Philipp Niebler, Thomas Hotho, Andreas Strohmaier, Markus ITeG and Knowledge and Data Engineering Group University of Kassel Germany Data Mining and Information Retrieval Group University of Würzburg Germany GESIS Germany University of Koblenz Germany
Social tagging systems have established themselves as an important part in today's web and have attracted the interest of our research community in a variety of investigations. Henceforth, several assumptions abou... 详细信息
来源: 评论
Discovering implicational knowledge in wikidata
arXiv
收藏 引用
arXiv 2019年
作者: Hanika, Tom Marx, Maximilian Stumme, Gerd Knowledge and Data Engineering Group University of Kassel Germany ITeG University of Kassel Germany TU Dresden Germany
knowledge graphs have recently become the state-of-The-Art tool for representing the diverse and complex knowledge of the world. Ex-amples include the proprietary knowledge graphs of companies such as Google, Facebook... 详细信息
来源: 评论
Mining social media to inform peatland fire and haze disaster management
arXiv
收藏 引用
arXiv 2017年
作者: Kibanov, Mark Stumme, Gerd Amin, Imaduddin Lee, Jong Gun Knowledge & Data Engineering Group ITeG Research Center University of Kassel Germany Pulse Lab Jakarta UN Global Pulse United Nations
Peatland fires and haze events are disasters with national, regional, and international implications. The phenomena lead to direct damage to local assets, as well as broader economic and environmental losses. Satellit... 详细信息
来源: 评论
Adaptive kNN using expected accuracy for classification of geo-spatial data
arXiv
收藏 引用
arXiv 2017年
作者: Kibanov, Mark Atzmueller, Martin Becker, Martin Hotho, Andreas Mueller, Juergen Stumme, Gerd University of Kassel ITeG Center Knowledge and Data Engineering Wilhelmshöher Allee 73 Kassel34121 Tilburg University WarandelaanTilburg5037 AB Netherlands University of Würzburg DMIR Group Am Hubland Würzburg97074 Germany
The k-Nearest Neighbor (kNN) classification approach is conceptually simple – yet widely applied since it often performs well in practical applications. However, using a global constant k does not always provide an o... 详细信息
来源: 评论