咨询与建议

限定检索结果

文献类型

  • 62 篇 期刊文献
  • 52 篇 会议
  • 5 册 图书

馆藏范围

  • 119 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 77 篇 工学
    • 51 篇 计算机科学与技术...
    • 45 篇 软件工程
    • 34 篇 生物医学工程(可授...
    • 24 篇 光学工程
    • 22 篇 生物工程
    • 21 篇 信息与通信工程
    • 14 篇 电气工程
    • 11 篇 电子科学与技术(可...
    • 4 篇 机械工程
    • 4 篇 仪器科学与技术
    • 3 篇 控制科学与工程
    • 3 篇 安全科学与工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 土木工程
    • 2 篇 网络空间安全
    • 1 篇 建筑学
    • 1 篇 化学工程与技术
  • 47 篇 理学
    • 25 篇 生物学
    • 19 篇 数学
    • 19 篇 物理学
    • 6 篇 统计学(可授理学、...
    • 1 篇 化学
    • 1 篇 地球物理学
  • 27 篇 医学
    • 25 篇 临床医学
    • 17 篇 基础医学(可授医学...
    • 14 篇 药学(可授医学、理...
  • 19 篇 管理学
    • 13 篇 图书情报与档案管...
    • 9 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学

主题

  • 6 篇 laboratories
  • 5 篇 ultrasonic imagi...
  • 4 篇 magnetic resonan...
  • 4 篇 convolution
  • 4 篇 computational mo...
  • 4 篇 image processing
  • 4 篇 biomedical imagi...
  • 3 篇 image enhancemen...
  • 3 篇 information syst...
  • 3 篇 motion estimatio...
  • 3 篇 parallel process...
  • 3 篇 rendering (compu...
  • 3 篇 computer archite...
  • 3 篇 real time system...
  • 3 篇 image segmentati...
  • 3 篇 pixel
  • 3 篇 computer graphic...
  • 3 篇 video sequences
  • 3 篇 congresses.
  • 3 篇 optical computin...

机构

  • 13 篇 national frontie...
  • 11 篇 key laboratory o...
  • 7 篇 centre for medic...
  • 6 篇 computer science...
  • 6 篇 school of comput...
  • 5 篇 image computing ...
  • 5 篇 fraunhofer mevis...
  • 5 篇 heidelberg
  • 5 篇 key laboratory o...
  • 4 篇 department of qu...
  • 4 篇 dementia researc...
  • 4 篇 heidelberg divis...
  • 4 篇 image computing ...
  • 4 篇 centre deréféren...
  • 4 篇 department of cl...
  • 4 篇 german center fo...
  • 4 篇 ihu strasbourg s...
  • 4 篇 university of ch...
  • 4 篇 inserm 1172 lill...
  • 4 篇 department of co...

作者

  • 12 篇 yang jinzhu
  • 9 篇 bakas spyridon
  • 9 篇 kim yongmin
  • 7 篇 jinzhu yang
  • 7 篇 cao peng
  • 7 篇 menze bjoern
  • 6 篇 kofler florian
  • 6 篇 yongmin kim
  • 5 篇 reyes mauricio
  • 5 篇 y. kim
  • 5 篇 zaiane osmar r.
  • 4 篇 rik vandenberghe
  • 4 篇 mario masellis
  • 4 篇 florence pasquie...
  • 4 篇 lize c. jiskoot
  • 4 篇 kozubek michal
  • 4 篇 martina bocchett...
  • 4 篇 galdran adrian
  • 4 篇 markus otto
  • 4 篇 matthis synofzik

语言

  • 112 篇 英文
  • 6 篇 中文
  • 1 篇 其他
检索条件"机构=Image Computing Systems Laboratory"
119 条 记 录,以下是1-10 订阅
排序:
Deep Learning in Medical image Registration: Magic or Mirage?  38
Deep Learning in Medical Image Registration: Magic or Mirage...
收藏 引用
38th Conference on Neural Information Processing systems, NeurIPS 2024
作者: Jena, Rohit Sethi, Deeksha Chaudhari, Pratik Gee, James C. Computer and Information Science United States Electrical and Systems Engineering United States Radiology United States Penn Image Computing and Science Laboratory United States
Classical optimization and learning-based methods are the two reigning paradigms in deformable image registration. While optimization-based methods boast generalizability across modalities and robust performance, lear...
来源: 评论
Learning discriminative foreground-and-background features for few-shot segmentation
收藏 引用
Multimedia Tools and Applications 2024年 第18期83卷 55999-56019页
作者: Jiang, Cong Zhou, Yange Liu, Zhaoshuo Feng, Chaolu Li, Wei Yang, Jinzhu School of Computer Science and Engineering Northeastern University Liaoning Shenyang110819 China College of Science Northeastern University Liaoning Shenyang110819 China Key Laboratory of Intelligent Computing in Medical Image Ministry of Education Liaoning Shenyang110819 China National Frontiers Science Center for Industrial Intelligence and Systems Optimization Liaoning Shenyang110819 China
Few-shot Semantic Segmentation (FSS) endeavors to segment novel categories in a query image by referring to a support set comprising only a few annotated examples. Presently, many existing FSS methodologies primarily ... 详细信息
来源: 评论
Deep Learning in Medical image Registration: Magic or Mirage?
arXiv
收藏 引用
arXiv 2024年
作者: Jena, Rohit Sethi, Deeksha Chaudhari, Pratik Gee, James C. Computer and Information Science Electrical and Systems Engineering Radiology Penn Image Computing and Science Laboratory United States
Classical optimization and learning-based methods are the two reigning paradigms in deformable image registration. While optimization-based methods boast generalizability across modalities and robust performance, lear... 详细信息
来源: 评论
BECNN: Bias Field Estimation CNN Trained with a Dual Route Implicit Supervised Learning Strategy
BECNN: Bias Field Estimation CNN Trained with a Dual Route I...
收藏 引用
2024 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2024
作者: Chen, Shuaizheng Feng, Chaolu Li, Wei Yang, Jinzhu Zhao, Dazhe Northeastern University School of Computer Science And Engineering Shenyang China Ministry of Education Northeastern University Key Laboratory of Intelligent Computing in Medical Image Shenyang China Northeastern University National Frontiers Science Center for Industrial Intelligence and Systems Optimization Shenyang China
Bias fields adversely affect various automatic analysis technologies. Therefore, bias field correction is essential. However, deep learning based methods encounter challenges in obtaining ground truth. Although existi... 详细信息
来源: 评论
ECA-RetinaNet: A Novel Self-Attention RetinaNet for Environmental Microorganism image Object Detection
ECA-RetinaNet: A Novel Self-Attention RetinaNet for Environm...
收藏 引用
2023 IEEE International Conference on Big Data, BigData 2023
作者: Yang, Hechen Yang, Jinzhu Jiang, Tao Zhao, Xin Zhang, Jinghua Zhao, Peng Chen, Ao Nie, Qianqing Grzegorzek, Marcin Li, Chen Northeastern University Microscopic Image and Medical Image Analysis Group College of Medicine and Biological Information Engineering Shenyang China Northeastern University Key Laboratory of Intelligent Computing in Medical Image Ministry of Education Liaoning Shenyang China Chengdu University of Traditional Chinese Medicine School of Intelligent Medicine Chengdu China Chengdu University of Information Technology International Joint Institute of Robotics and Intelligent Systems Chengdu China Institute of Medical Informatics University of Luebeck Luebeck Germany
The detection of environmental microorganisms is always a difficult task, e specially when the multi-scale environment is complex. For tiny objects in microscopic images, current detection methods face the challenge o... 详细信息
来源: 评论
SETTP: Style Extraction and Tunable Inference via Dual-Level Transferable Prompt Learning  27
SETTP: Style Extraction and Tunable Inference via Dual-Level...
收藏 引用
27th European Conference on Artificial Intelligence, ECAI 2024
作者: Jin, Chunzhen Huang, Yongfeng Wang, Yaqi Cao, Peng Zaïane, Osmar Northeastern University Shenyang China Key Laboratory of Intelligent Computing in Medical Image of Ministry of Education Northeastern University Shenyang China Department of Computer Science and Engineering The Chinese University of Hong Kong Hong Kong National Frontiers Science Center for Industrial Intelligence and Systems Optimization Shenyang China Amii University of Alberta EdmontonAB Canada
Text style transfer, an important research direction in natural language processing, aims to adapt the text to various preferences but often faces challenges with limited resources. In this work, we introduce a novel ...
来源: 评论
csl-MTFL: Multi-task Feature Learning with Joint Correlation Structure Learning for Alzheimer’s Disease Cognitive Performance Prediction  9th
csl-MTFL: Multi-task Feature Learning with Joint Correlatio...
收藏 引用
19th International Conference on Advanced Data Mining and Applications, ADMA 2023
作者: Liang, Wei Zhang, Kai Cao, Peng Liu, Xiaoli Yang, Jinzhu Zaiane, Osmar R. Computer Science and Engineering Northeastern University Shenyang China Key Laboratory of Intelligent Computing in Medical Image of Ministry of Education Northeastern University Shenyang China National Frontiers Science Center for Industrial Intelligence and Systems Optimization Shenyang110819 China DAMO Academy Alibaba Group Hangzhou China Alberta Machine Intelligence Institute University of Alberta EdmontonAB Canada
Alzheimer’s disease (AD) is a common chronic neurodegenerative disease and the accurate prediction of the clinical cognitive performance is important for diagnosis and treatment. Recently, multi-task feature learning... 详细信息
来源: 评论
Towards Time-Variant-Aware Link Prediction in Dynamic Graph Through Self-supervised Learning  9th
Towards Time-Variant-Aware Link Prediction in Dynamic Graph...
收藏 引用
19th International Conference on Advanced Data Mining and Applications, ADMA 2023
作者: Wen, Guangqi Cao, Peng Jin, Zhiyong Song, Ruoxian Liu, Xiaoli Yang, Jinzhu Zaiane, Osmar R. Computer Science and Engineering Northeastern University Shenyang China Key Laboratory of Intelligent Computing in Medical Image of Ministry of Education Northeastern University Shenyang China National Frontiers Science Center for Industrial Intelligence and Systems Optimization Shenyang110819 China DAMO Academy Alibaba Group Hangzhou China Alberta Machine Intelligence Institute University of Alberta EdmontonAB Canada
Dynamic graph link prediction is a challenging problem because the graph topology and node attributes vary at different times. A purely supervised learning scheme for the dynamic graph data usually leads to poor gener... 详细信息
来源: 评论
A Novel Federated Learning Based Intrusion Detection System for IoT Networks
A Novel Federated Learning Based Intrusion Detection System ...
收藏 引用
IEEE International Conference on Communications (ICC)
作者: Rabaie Benameur Amine Dahane Sami Souihi Abdelhamid Mellouk Laboratory of Industrial Computing and Networks (RIIR) University of Oran 1 Oran Algeria Institute of Applied Science and Technology ISTA Oran Algeria Image Signal and Intelligent Systems (LiSSi) Laboratory TincNET Research Team Univ. Paris-Est Cr eteil France
In the realm of IoT platforms, susceptibility to cyber-attacks is a pressing concern, necessitating the deployment of Intrusion Detection systems (IDS). Constructing a scalable, accurate, and lightweight model without... 详细信息
来源: 评论
Label Correlation Guided Feature Selection for Multi-label Learning  9th
Label Correlation Guided Feature Selection for Multi-label ...
收藏 引用
19th International Conference on Advanced Data Mining and Applications, ADMA 2023
作者: Zhang, Kai Liang, Wei Cao, Peng Yang, Jinzhu Li, Weiping Zaiane, Osmar R. Computer Science and Engineering Northeastern University Shenyang China Key Laboratory of Intelligent Computing in Medical Image of Ministry of Education Northeastern University Shenyang China National Frontiers Science Center for Industrial Intelligence and Systems Optimization Shenyang110819 China School of Software and Microelectronics Peking University Beijing China Alberta Machine Intelligence Institute University of Alberta EdmontonAB Canada
Multi-label learning has received much attention due to its wide range of application domains. Multi-label data often has high-dimensional features, which brings more challenges to classification algorithms. Feature s... 详细信息
来源: 评论