咨询与建议

限定检索结果

文献类型

  • 34 篇 期刊文献
  • 30 篇 会议

馆藏范围

  • 64 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 33 篇 工学
    • 21 篇 计算机科学与技术...
    • 16 篇 生物医学工程(可授...
    • 15 篇 软件工程
    • 14 篇 光学工程
    • 9 篇 生物工程
    • 7 篇 电气工程
    • 6 篇 信息与通信工程
    • 4 篇 电子科学与技术(可...
    • 1 篇 力学(可授工学、理...
    • 1 篇 机械工程
    • 1 篇 仪器科学与技术
    • 1 篇 控制科学与工程
    • 1 篇 网络空间安全
  • 22 篇 理学
    • 11 篇 生物学
    • 8 篇 物理学
    • 7 篇 数学
    • 1 篇 统计学(可授理学、...
  • 10 篇 医学
    • 8 篇 临床医学
    • 7 篇 基础医学(可授医学...
    • 3 篇 药学(可授医学、理...
    • 1 篇 公共卫生与预防医...
  • 6 篇 管理学
    • 3 篇 管理科学与工程(可...
    • 3 篇 图书情报与档案管...

主题

  • 13 篇 laboratories
  • 6 篇 circuit testing
  • 6 篇 circuit faults
  • 6 篇 hardware
  • 6 篇 fault detection
  • 5 篇 automatic testin...
  • 4 篇 logic testing
  • 4 篇 image processing
  • 4 篇 system testing
  • 4 篇 built-in self-te...
  • 4 篇 computer errors
  • 3 篇 ultrasonic imagi...
  • 3 篇 application soft...
  • 3 篇 test pattern gen...
  • 3 篇 electrical fault...
  • 3 篇 computer graphic...
  • 3 篇 costs
  • 3 篇 automata
  • 3 篇 logic design
  • 3 篇 cmos technology

机构

  • 9 篇 center for relia...
  • 5 篇 centre for medic...
  • 5 篇 heidelberg
  • 4 篇 electrical engin...
  • 4 篇 heidelberg divis...
  • 3 篇 university of pe...
  • 3 篇 department of co...
  • 3 篇 vector institute...
  • 3 篇 erlangen-nürnber...
  • 3 篇 radboud institut...
  • 3 篇 department of bi...
  • 3 篇 heidelberg divis...
  • 3 篇 general robotics...
  • 3 篇 department of di...
  • 3 篇 university of po...
  • 3 篇 heidelberg divis...
  • 3 篇 department of ra...
  • 3 篇 department of ra...
  • 3 篇 universitat pomp...
  • 3 篇 google health de...

作者

  • 9 篇 e.j. mccluskey
  • 8 篇 bakas spyridon
  • 6 篇 kofler florian
  • 5 篇 kozubek michal
  • 5 篇 reinke annika
  • 5 篇 glocker ben
  • 5 篇 müller henning
  • 5 篇 eisenmann matthi...
  • 5 篇 kim yongmin
  • 4 篇 rajpoot nasir
  • 4 篇 galdran adrian
  • 4 篇 godau patrick
  • 4 篇 van ginneken bra...
  • 4 篇 meijering erik
  • 4 篇 reyes mauricio
  • 4 篇 cardoso m. jorge
  • 4 篇 menze bjoern
  • 4 篇 gee james c.
  • 4 篇 maier-hein lena
  • 4 篇 farahani keyvan

语言

  • 62 篇 英文
  • 2 篇 其他
检索条件"机构=Image Computing Systems Laboratory Departments of Electrical Engineering"
64 条 记 录,以下是1-10 订阅
排序:
Deep Learning in Medical image Registration: Magic or Mirage?  38
Deep Learning in Medical Image Registration: Magic or Mirage...
收藏 引用
38th Conference on Neural Information Processing systems, NeurIPS 2024
作者: Jena, Rohit Sethi, Deeksha Chaudhari, Pratik Gee, James C. Computer and Information Science United States Electrical and Systems Engineering United States Radiology United States Penn Image Computing and Science Laboratory United States
Classical optimization and learning-based methods are the two reigning paradigms in deformable image registration. While optimization-based methods boast generalizability across modalities and robust performance, lear...
来源: 评论
Deep Learning in Medical image Registration: Magic or Mirage?
arXiv
收藏 引用
arXiv 2024年
作者: Jena, Rohit Sethi, Deeksha Chaudhari, Pratik Gee, James C. Computer and Information Science Electrical and Systems Engineering Radiology Penn Image Computing and Science Laboratory United States
Classical optimization and learning-based methods are the two reigning paradigms in deformable image registration. While optimization-based methods boast generalizability across modalities and robust performance, lear... 详细信息
来源: 评论
Deep learning in medical image registration: magic or mirage?  24
Deep learning in medical image registration: magic or mirage...
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing systems
作者: Rohit Jena Deeksha Sethi Pratik Chaudhari James C. Gee Computer and Information Science and Penn Image Computing and Science Laboratory Computer and Information Science Computer and Information Science and Electrical and Systems Engineering Computer and Information Science and Radiology and Penn Image Computing and Science Laboratory
Classical optimization and learning-based methods are the two reigning paradigms in deformable image registration. While optimization-based methods boast generalizability across modalities and robust performance, lear...
来源: 评论
FireANTs: Adaptive Riemannian Optimization for Multi-Scale Diffeomorphic Matching
arXiv
收藏 引用
arXiv 2024年
作者: Jena, Rohit Chaudhari, Pratik Gee, James C. Computer and Information Science University of Pennsylvania United States Electrical and Systems Engineering University of Pennsylvania United States Radiology Perelman School of Medicine University of Pennsylvania United States Penn Image Computing and Science Laboratory University of Pennsylvania United States
The paper proposes FireANTs, the first multi-scale Adaptive Riemannian Optimization algorithm for dense diffeomorphic image matching. One of the most critical and understudied aspects of diffeomorphic image matching a... 详细信息
来源: 评论
Gemnet: Group Equivariant Mesh Convolutional Neural Network
SSRN
收藏 引用
SSRN 2022年
作者: Afzal, Muhammad Kamran Zang, Yu Zeb, Adnan Afzal, H.M. Rehan Liu, Weiquan Wang, Cheng Li, Jonathan Fujian Key Laboratory of Sensing and Computing for Smart City School of Informatics Xiamen University 422 Siming South Road Xiamen361005 China College of Engineering Southern University of Science and Technology Shenzhen China School of Electrical Engineering and Computing University of Newcastle CallaghanNSW2308 Australia Departments of Geography and Environmental Management and Systems Design Engineering University of Waterloo WaterlooONN2L 3G1 Canada
Recent convolutional neural networks (CNNs) in geometric deep-learning for 3D meshes are inadequate in a natural generalisation of CNNs that reduces sample complexity by exploiting symmetries. We propose a novel Group... 详细信息
来源: 评论
Disorganization of language and working memory systems in frontal versus temporal lobe epilepsy
收藏 引用
Brain 2023年 第3期146卷 935-953页
作者: Caciagli, Lorenzo Paquola, Casey He, Xiaosong Vollmar, Christian Centeno, Maria Wandschneider, Britta Braun, Urs Trimmel, Karin Vos, Sjoerd B. Sidhu, Meneka K. Thompson, Pamela J. Baxendale, Sallie Winston, Gavin P. Duncan, John S. Bassett, Dani S. Koepp, Matthias J. Bernhardt, Boris C. Department of Bioengineering University of Pennsylvania 240 Skirkanich Hall 210 South 33rd Street Philadelphia 19104 PA United States Department of Clinical and Experimental Epilepsy UCL Queen Square Institute of Neurology London WC1N 3BG United Kingdom MRI Unit Epilepsy Society Chalfont St Peter Buckinghamshire SL9 0RJ United Kingdom Multimodal Imaging and Connectome Analysis Laboratory McConnell Brain Imaging Centre Montreal Neurological Institute Montreal H3A 2B4 QC Canada Department of Neurology Ludwig-Maximilians-Universität Munich 81377 Germany Epilepsy Unit Hospital Clínic de Barcelona IDIBAPS Barcelona 08036 Spain Department of Psychiatry and Psychotherapy Central Institute of Mental Health Medical Faculty Mannheim University of Heidelberg Mannheim Germany Department of Neurology Medical University of Vienna Vienna Austria Centre for Medical Image Computing University College London London United Kingdom Neuroradiological Academic Unit UCL Queen Square Institute of Neurology University College London London United Kingdom Department of Medicine Division of Neurology Queen's University Kingston ON Canada Department of Physics and Astronomy University of Pennsylvania Philadelphia 19104 PA United States Department of Electrical and Systems Engineering University of Pennsylvania Philadelphia 19104 PA United States Department of Neurology University of Pennsylvania Philadelphia 19104 PA United States Department of Psychiatry University of Pennsylvania Philadelphia 19104 PA United States Santa Fe Institute Santa Fe 87501 NM United States
Cognitive impairment is a common comorbidity of epilepsy and adversely impacts people with both frontal lobe (FLE) and temporal lobe (TLE) epilepsy. While its neural substrates have been investigated extensively in TL... 详细信息
来源: 评论
Understanding metric-related pitfalls in image analysis validation
arXiv
收藏 引用
arXiv 2023年
作者: Reinke, Annika Tizabi, Minu D. Baumgartner, Michael Eisenmann, Matthias Heckmann-Nötzel, Doreen Kavur, A. Emre Rädsch, Tim Sudre, Carole H. Acion, Laura Antonelli, Michela Arbel, Tal Bakas, Spyridon Benis, Arriel Blaschko, Matthew B. Buettner, Florian Cardoso, M. Jorge Cheplygina, Veronika Chen, Jianxu Christodoulou, Evangelia Cimini, Beth A. Collins, Gary S. Farahani, Keyvan Ferrer, Luciana Galdran, Adrian van Ginneken, Bram Glocker, Ben Godau, Patrick Haase, Robert Hashimoto, Daniel A. Hoffman, Michael M. Huisman, Merel Isensee, Fabian Jannin, Pierre Kahn, Charles E. Kainmueller, Dagmar Kainz, Bernhard Karargyris, Alexandros Karthikesalingam, Alan Kenngott, Hannes Kleesiek, Jens Kofler, Florian Kooi, Thijs Kopp-Schneider, Annette Kozubek, Michal Kreshuk, Anna Kurc, Tahsin Landman, Bennett A. Litjens, Geert Madani, Amin Maier-Hein, Klaus Martel, Anne L. Mattson, Peter Meijering, Erik Menze, Bjoern Moons, Karel G.M. Müller, Henning Nichyporuk, Brennan Nickel, Felix Petersen, Jens Rafelski, Susanne M. Rajpoot, Nasir Reyes, Mauricio Riegler, Michael A. Rieke, Nicola Saez-Rodriguez, Julio Sánchez, Clara I. Shetty, Shravya Summers, Ronald M. Taha, Abdel A. Tiulpin, Aleksei Tsaftaris, Sotirios A. van Calster, Ben Varoquaux, Gaël Yaniv, Ziv R. Jäger, Paul F. Maier-Hein, Lena Faculty of Mathematics and Computer Science Heidelberg University Heidelberg Germany Heidelberg Division of Intelligent Medical Systems Germany NCT Heidelberg A Partnership Between DKFZ University Medical Center Heidelberg Germany Heidelberg Division of Medical Image Computing Germany Heidelberg Division of Intelligent Medical Systems Germany MRC Unit for Lifelong Health and Ageing UCL Centre for Medical Image Computing Department of Computer Science University College London London United Kingdom School of Biomedical Engineering and Imaging Science King’s College London London United Kingdom Instituto de Cálculo CONICET – Universidad de Buenos Aires Buenos Aires Argentina Centre for Medical Image Computing University College London London United Kingdom McGill University Montreal Canada Division of Computational Pathology Dept of Pathology & Laboratory Medicine Indiana University School of Medicine IU Health Information and Translational Sciences Building Indianapolis United States University of Pennsylvania Richards Medical Research Laboratories FL7 PhiladelphiaPA United States Department of Digital Medical Technologies Holon Institute of Technology Holon Israel European Federation for Medical Informatics Le Mont-sur-Lausanne Switzerland Center for Processing Speech and Images Department of Electrical Engineering KU Leuven Leuven Belgium partner site Frankfurt/Mainz a partnership between DKFZ and UCT Frankfurt Marburg Germany Heidelberg Germany Goethe University Frankfurt Department of Medicine Germany Goethe University Frankfurt Department of Informatics Germany and Frankfurt Cancer Insititute Germany Department of Computer Science IT University of Copenhagen Copenhagen Denmark Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V. Dortmund Germany Imaging Platform Broad Institute of MIT and Harvard CambridgeMA United States Centre for Statistics in Medicine University of Oxford Oxford United Kingdom Center for Biomedical In
Validation metrics are key for tracking scientific progress and bridging the current chasm between artificial intelligence (AI) research and its translation into practice. However, increasing evidence shows that parti... 详细信息
来源: 评论
Learning data-adaptive non-parametric kernels
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2020年 第1期21卷 8590-8628页
作者: Fanghui Liu Xiaolin Huang Chen Gong Jie Yang Li Li Department of Electrical Engineering ESAT-STADIUS KU Leuven Belgium Institute of Image Processing and Pattern Recognition Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China PCA Lab Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education School of Computer Science and Engineering Nanjing University of Science and Technology China and Department of Computing Hong Kong Polytechnic University Hong Kong SAR China Department of Automation BNRist Tsinghua University China
In this paper, we propose a data-adaptive non-parametric kernel learning framework in margin based kernel methods. In model formulation, given an initial kernel matrix, a data-adaptive matrix with two constraints is i... 详细信息
来源: 评论
NIMG-22. AN AI-BASED COORDINATE SYSTEM ELUCIDATES RADIOGENOMIC HETEROGENEITY OF GLIOBLASTOMA VIA DEEP LEARNING AND MANIFOLD EMBEDDINGS
收藏 引用
Neuro-Oncology 2022年 第SUPPLEMENT_7期24卷 vii166–vii166页
作者: Yu, Fanyang Kazerooni, Anahita Fathi Toorens, Erik Akbari, Hamed Sako, Chiharu Mamourian, Elizabeth Bagley, Stephen Binder, Zev A Lustig, Robert A Brem, Steven O’Rourke, Donald M Ganguly, Tapan Bakas, Spyridon Nasrallah, MacLean Chaudhari, Pratik Davatzikos, Christos Center for Biomedical Image Computing and Analytics and Department of Bioengineering University of Pennsylvania Philadelphia PA USA Center for Biomedical Image Computing and Analytics and Department of Radiology Perelman School of Medicine University of Pennsylvania Philadelphia PA USA University of Pennsylvania Philadelphia USA University of Pennsylvania Philadelphia PA USA Hospital of the University of Pennsylvania Philadelphia PA USA Hospital of the University of Pennsylvania Philadelphia USA University of Pennsylvania Phildelphia USA Center for Biomedical Image Computing and Analytics Department of Radiology and Department of Pathology and Laboratory Medicine Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Department of Pathology and Laboratory Medicine Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Department of Electrical and Systems Engineering University of Pennsylvania Philadelphia USA
来源: 评论
MONAI: An open-source framework for deep learning in healthcare
arXiv
收藏 引用
arXiv 2022年
作者: Cardoso, M. Jorge Li, Wenqi Brown, Richard Ma, Nic Kerfoot, Eric Wang, Yiheng Murrey, Benjamin Myronenko, Andriy Zhao, Can Yang, Dong Nath, Vishwesh He, Yufan Xu, Ziyue Hatamizadeh, Ali Zhu, Wentao Liu, Yun Zheng, Mingxin Tang, Yucheng Yang, Isaac Zephyr, Michael Hashemian, Behrooz Alle, Sachidanand Darestani, Mohammad Zalbagi Budd, Charlie Modat, Marc Vercauteren, Tom Wang, Guotai Li, Yiwen Hu, Yipeng Fu, Yunguan Gorman, Benjamin Johnson, Hans Genereaux, Brad Erdal, Barbaros S. Gupta, Vikash Diaz-Pinto, Andres Dourson, Andre Maier-Hein, Lena Jaeger, Paul F. Baumgartner, Michael Kalpathy-Cramer, Jayashree Flores, Mona Kirby, Justin Cooper, Lee A.D. Roth, Holger R. Xu, Daguang Bericat, David Floca, Ralf Zhou, S. Kevin Shuaib, Haris Farahani, Keyvan Maier-Hein, Klaus H. Aylward, Stephen Dogra, Prerna Ourselin, Sebastien Feng, Andrew School of Biomedical Engineering & Imaging Sciences King’s College London London United Kingdom NVIDIA Corporation Santa Clara and Bethesda United States School of Electrical and Computer Engineering Rice University Houston United States Department of Engineering Science University of Oxford Oxford United Kingdom Department of Medical Physics and Biomedical Engineering University College London London United Kingdom Department of BioAI InstaDeep Ltd London United Kingdom Department of Electrical & Computer Engineering University of Iowa Iowa City United States Mayo Clinic Jacksonville United States Mars Incorporated United States Div. Intelligent Medical Systems German Cancer Research Center Heidelberg Germany Division of Medical Image Computing German Cancer Research Center Heidelberg Germany Pattern Analysis and Learning Group Department of Radiation Oncology Heidelberg University Hospital Heidelberg Germany School of Biomedical Engineering Suzhou Institute for Advanced Research University of Science and Technology of China Suzhou China Department of Medical Physics Guy’s & St Thomas’ NHS Foundation Trust London United Kingdom National Cancer Institute Bethesda United States Kitware Inc. Clifton Park United States Department of Ophthalmology University of Colorado Aurora United States Frederick National Laboratory for Cancer Research Frederick United States Department of Pathology Northwestern University Chicago United States
Artificial Intelligence (AI) is having a tremendous impact across most areas of science. Applications of AI in healthcare have the potential to improve our ability to detect, diagnose, prognose, and intervene on human... 详细信息
来源: 评论