咨询与建议

限定检索结果

文献类型

  • 40 篇 期刊文献
  • 19 篇 会议

馆藏范围

  • 59 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 31 篇 工学
    • 20 篇 计算机科学与技术...
    • 16 篇 软件工程
    • 13 篇 生物医学工程(可授...
    • 8 篇 光学工程
    • 8 篇 生物工程
    • 4 篇 信息与通信工程
    • 3 篇 机械工程
    • 2 篇 仪器科学与技术
    • 2 篇 电气工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 化学工程与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 水利工程
  • 25 篇 医学
    • 23 篇 临床医学
    • 12 篇 基础医学(可授医学...
    • 10 篇 药学(可授医学、理...
    • 2 篇 公共卫生与预防医...
  • 22 篇 理学
    • 11 篇 生物学
    • 7 篇 数学
    • 4 篇 统计学(可授理学、...
    • 3 篇 物理学
    • 2 篇 化学
    • 1 篇 地质学
    • 1 篇 系统科学
  • 5 篇 管理学
    • 2 篇 公共管理
    • 2 篇 图书情报与档案管...
    • 1 篇 管理科学与工程(可...
    • 1 篇 工商管理
  • 1 篇 教育学
    • 1 篇 心理学(可授教育学...
  • 1 篇 农学

主题

  • 5 篇 visualization
  • 5 篇 training
  • 4 篇 correlation
  • 2 篇 support vector m...
  • 2 篇 semantic segment...
  • 2 篇 deep learning
  • 2 篇 magnetic resonan...
  • 2 篇 generative adver...
  • 2 篇 training data
  • 2 篇 image segmentati...
  • 2 篇 target tracking
  • 2 篇 electroencephalo...
  • 2 篇 neuroimaging
  • 2 篇 computational mo...
  • 2 篇 digital patholog...
  • 2 篇 convolutional co...
  • 2 篇 biological syste...
  • 2 篇 tumors
  • 2 篇 forecasting
  • 2 篇 attention

机构

  • 6 篇 artificial intel...
  • 6 篇 centre for biome...
  • 4 篇 image analytics
  • 4 篇 university of pe...
  • 4 篇 center for biome...
  • 4 篇 department of pa...
  • 4 篇 csiro data61
  • 3 篇 department of ra...
  • 3 篇 department of bi...
  • 3 篇 correspondece
  • 3 篇 department of ra...
  • 3 篇 department of ra...
  • 2 篇 image processing...
  • 2 篇 school of comput...
  • 2 篇 university of sc...
  • 2 篇 department of co...
  • 2 篇 center for artif...
  • 2 篇 laboratory of be...
  • 2 篇 universidad pomp...
  • 2 篇 translational bi...

作者

  • 6 篇 ilya m. nasralla...
  • 6 篇 guray erus
  • 6 篇 christos davatzi...
  • 5 篇 junhao wen
  • 5 篇 davatzikos chris...
  • 5 篇 elizabeth mamour...
  • 5 篇 haochang shou
  • 4 篇 he fan
  • 4 篇 david a. wolk
  • 4 篇 ahmed abdulkadir
  • 4 篇 huang xiaolin
  • 4 篇 erhan gundogdu
  • 4 篇 yuhan cui
  • 4 篇 he mingzhen
  • 3 篇 van huffel sabin...
  • 3 篇 treanor darren
  • 3 篇 zhijian yang
  • 3 篇 wang rongguang
  • 3 篇 li shen
  • 3 篇 sindhuja tirumal...

语言

  • 54 篇 英文
  • 5 篇 其他
检索条件"机构=Image Data Analytics"
59 条 记 录,以下是11-20 订阅
排序:
Learning Analysis of Kernel Ridgeless Regression with Asymmetric Kernel Learning
arXiv
收藏 引用
arXiv 2024年
作者: He, Fan He, Mingzhen Shi, Lei Huang, Xiaolin Suykens, Johan A.K. STADIUS Center for Dynamical Systems Signal Processing and Data Analytics KU Leuven Leuven Belgium MOE Key Laboratory of System Control and Information Processing Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China Shanghai Key Laboratory for Contemporary Applied Mathematics School of Mathematical Sciences Fudan University Shanghai200433 China Shanghai Artificial Intelligence Laboratory Shanghai200232 China MOE Key Laboratory of System Control and Information Processing Institute of Image Processing and Pattern Recognition Institute of Medical Robotics Shanghai Jiao Tong University Shanghai200240 China
Ridgeless regression has garnered attention among researchers, particularly in light of the "Benign Overfitting" phenomenon, where models interpolating noisy samples demonstrate robust generalization. Howeve... 详细信息
来源: 评论
Bias in Machine Learning Models Can Be Significantly Mitigated by Careful Training: Evidence from Neuroimaging Studies
arXiv
收藏 引用
arXiv 2022年
作者: Wang, Rongguang Chaudhari, Pratik Davatzikos, Christos Department of Electrical and Systems Engineering University of Pennsylvania United States Center for AI and Data Science for Integrated Diagnostics University of Pennsylvania United States Center for Biomedical Image Computing and Analytics University of Pennsylvania United States Department of Computer and Information Science University of Pennsylvania United States Department of Radiology Perelman School of Medicine University of Pennsylvania United States
Despite the great promise that machine learning has offered in many fields of medicine, it has also raised concerns about potential biases and poor generalization across genders, age distributions, races and ethniciti... 详细信息
来源: 评论
Recurrent Neural Networks for Modelling Gross Primary Production
Recurrent Neural Networks for Modelling Gross Primary Produc...
收藏 引用
IEEE International Symposium on Geoscience and Remote Sensing (IGARSS)
作者: David Montero Miguel D. Mahecha Francesco Martinuzzi César Aybar Anne Klosterhalfen Alexander Knohl Franziska Koebsch Jesús Anaya Sebastian Wieneke Remote Sensing Centre for Earth System Research (RSC4Earth) Leipzig University Institute of Earth System Science & Remote Sensing Leipzig University German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Department of Remote Sensing Helmholtz Centre for Environmental Research (UFZ) Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI) Leipzig University Image Processing Laboratory Universitat de València Bioclimatology University of Göttingen Grupo de Investigaciones y Mediciones Ambientales (GEMA) Universidad de Medellín
Accurate quantification of Gross Primary Production (GPP) is crucial for understanding terrestrial carbon dynamics. It represents the largest atmosphere-to-land CO 2 flux, especially significant for forests. Eddy Cov... 详细信息
来源: 评论
Applications of Generative Adversarial Networks in Neuroimaging and Clinical Neuroscience
arXiv
收藏 引用
arXiv 2022年
作者: Wang, Rongguang Bashyam, Vishnu Yang, Zhijian Yu, Fanyang Tassopoulou, Vasiliki Chintapalli, Sai Spandana Skampardoni, Ioanna Sreepada, Lasya P. Sahoo, Dushyant Nikita, Konstantina Abdulkadir, Ahmed Wen, Junhao Davatzikos, Christos Center for AI and Data Science for Integrated Diagnostics University of Pennsylvania Philadelphia United States Center for Biomedical Image Computing and Analytics University of Pennsylvania Philadelphia United States School of Electrical and Computer Engineering National Technical University of Athens Athens Greece Department of Clinical Neurosciences Lausanne University Hospital University of Lausanne Lausanne Switzerland Department of Radiology Perelman School of Medicine University of Pennsylvania Philadelphia United States
Generative adversarial networks (GANs) are one powerful type of deep learning models that have been successfully utilized in numerous fields. They belong to the broader family of generative methods, which learn to gen... 详细信息
来源: 评论
Transcriptional and Neurochemical Signatures of Cerebral Blood Flow Alterations in Individuals With Schizophrenia or at Clinical High Risk for Psychosis
收藏 引用
Biological Psychiatry 2025年 第2期98卷 144-155页
作者: Knight, Samuel R. Abbasova, Leyla Zeighami, Yashar Hansen, Justine Y. Martins, Daniel Zelaya, Fernando Dipasquale, Ottavia Liu, Thomas Shin, David Bossong, Matthijs Azis, Matilda Antoniades, Mathilde Howes, Oliver D. Bonoldi, Ilaria Egerton, Alice Allen, Paul McGuire, Philip Modinos, Gemma Department of Psychological Medicine Institute of Psychiatry Psychology and Neuroscience King's College London London United Kingdom Centre for Developmental Neurobiology Institute of Psychiatry Psychology and Neuroscience King's College London London United Kingdom Medical Research Council Centre for Neurodevelopmental Disorders King's College London London United Kingdom Douglas Research Centre Department of Psychiatry McGill University Montreal QC Canada Montreal Neurological Institute McGill University Montreal QC Canada Department of Neuroimaging Institute of Psychiatry Psychology and Neuroscience King's College London London United Kingdom Olea Medical La Ciotat France Centre for Functional MRI University of California San Diego San Diego CA United States Global MR Applications and Workflow GE Healthcare Menlo Park CA United States Department of Psychosis Studies Institute of Psychiatry Psychology and Neuroscience King's College London London United Kingdom Department of Psychiatry Brain Center Rudoph Magnus University Medical Center Utrecht Utrecht Netherlands Center for AI and Data Science for Integrated Diagnostics and Center for Biomedical Image Computing and Analytics University of Pennsylvania Philadelphia PA United States Department of Psychiatry Oxford University Oxford United Kingdom
Background: The brain integrates multiple scales of description, from the level of cells and molecules to large-scale networks and behavior. Understanding relationships across these scales may be fundamental to advanc... 详细信息
来源: 评论
An international study of stain variability in histopathology using qualitative and quantitative analysis
收藏 引用
Journal of Pathology Informatics 2025年 17卷 100423-100423页
作者: Dunn, Catriona Brettle, David Hodgson, Chantell Hughes, Robert Treanor, Darren National Pathology Imaging Co-operative Leeds Teaching Hospitals NHS Trust Beckett Street Leeds United Kingdom UK NEQAS Cellular Pathology Technique Haylofts St Thomas Street Haymarket Newcastle United Kingdom Department of Histopathology Leeds Teaching Hospitals NHS Trust Beckett Street Leeds United Kingdom Department of Pathology and Data Analytics University of Leeds Beckett Street Leeds United Kingdom Department of Clinical Pathology and Clinical and Experimental Medicine Linköping University Linköping Sweden Centre for Medical Image Science and Visualisation Linköping University Linköping Sweden
Hematoxylin and eosin (H&E) staining accounts for over 80% of slides stained worldwide. Although routinely used, there are high levels of variation between labs due to different staining methods. Staining is a piv... 详细信息
来源: 评论
Embedding Space Augmentation for Weakly Supervised Learning in Whole-Slide images
Embedding Space Augmentation for Weakly Supervised Learning ...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Imaad Zaffar Guillaume Jaume Nasir Rajpoot Faisal Mahmood Department of Computer Science University College London UK Department of Pathology Harvard Medical School Brigham and Women’s Hospital Boston MA USA Department of Pathology Harvard Medical School Massachusetts General Hospital Boston MA USA Cancer Program Broad Institute of Harvard and MIT Cambridge MA USA Data Science Program Dana-Farber Cancer Institute Boston MA USA Department of Computer Science Tissue Image Analytics Centre University of Warwick Coventry UK Department of Pathology University Hospitals Coventry and Warwickshire NHS Trust Coventry UK The Alan Turing Institute London UK
Multiple Instance Learning (MIL) is a widely employed framework for learning on gigapixel whole-slide images (WSIs) from WSI-level annotations. In most MIL-based analytical pipelines for WSI-level analysis, the WSIs a...
来源: 评论
Completely self-supervised crowd counting via distribution matching
arXiv
收藏 引用
arXiv 2020年
作者: Sam, Deepak Babu Agarwalla, Abhinav Joseph, Jimmy Sindagi, Vishwanath A. Babu, R. Venkatesh Patel, Vishal M. Video Analytics Lab Department of Computational and Data Sciences Indian Institute of Science Bangalore India Vision & Image Understanding Lab Department of Electrical and Computer Engineering Johns Hopkins University Baltimore United States
Dense crowd counting is a challenging task that demands millions of head annotations for training models. Though existing self-supervised approaches could learn good representations, they require some labeled data to ... 详细信息
来源: 评论
Restoration of marker occluded hematoxylin and eosin stained whole slide histology images using generative adversarial networks
arXiv
收藏 引用
arXiv 2019年
作者: Venkatesh, Bairavi Shah, Tosha Chen, Antong Ghafurian, Soheil Image Data Analytics Informatics IT Merck & Co. Inc. West PointPA19486 United States Image Data Analytics Informatics IT Merck & Co. Inc. RahwayNJ07065 United States
It is common for pathologists to annotate specific regions of the tissue, such as tumor, directly on the glass slide with markers. Although this practice was helpful prior to the advent of histology whole slide digiti... 详细信息
来源: 评论
Novel genomic loci shape two neuroanatomical dimensions of AD in non-demented populations
收藏 引用
Alzheimer's & Dementia 2023年 第S10期19卷
作者: Junhao Wen Zhijian Yang Ioanna Skampardoni Marilena De Pian Guray Erus Elizabeth Mamourian Yuhan Cui Bingxin Zhao Ilya M. Nasrallah Arthur W. Toga Haochang Shou Li Shen Christos Davatzikos Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL) Center for and Data Science for Integrated Diagnostics (AI2D) Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Center for Biomedical Image Computing and Analytics University of Pennsylvania Philadelphia PA USA Centre for Biomedical Image Computing and Analytics University of Pennsylvania Philadelphia PA USA University of Pennsylvania philadelphia PA USA Upenn Philadelphia PA USA University of Pennsylvania Philadelphia PA USA Laboratory of Neuro Imaging (LONI) University of Southern California Los Angeles CA USA Department of Biostatistics Epidemiology & Informatics University of Pennsylvania Philadelphia PA USA University of Pennsylvania Philadelphia PA Greece
Background Artificial intelligence has been in burgeoning demand to be applied to magnetic imaging resonance (MRI) data to parse the neuroanatomical heterogeneity of Alzheimer’s disease (AD) and/or mild cognitive imp...
来源: 评论