咨询与建议

限定检索结果

文献类型

  • 40 篇 期刊文献
  • 19 篇 会议

馆藏范围

  • 59 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 31 篇 工学
    • 20 篇 计算机科学与技术...
    • 16 篇 软件工程
    • 13 篇 生物医学工程(可授...
    • 8 篇 光学工程
    • 8 篇 生物工程
    • 4 篇 信息与通信工程
    • 3 篇 机械工程
    • 2 篇 仪器科学与技术
    • 2 篇 电气工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 化学工程与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 水利工程
  • 25 篇 医学
    • 23 篇 临床医学
    • 12 篇 基础医学(可授医学...
    • 10 篇 药学(可授医学、理...
    • 2 篇 公共卫生与预防医...
  • 22 篇 理学
    • 11 篇 生物学
    • 7 篇 数学
    • 4 篇 统计学(可授理学、...
    • 3 篇 物理学
    • 2 篇 化学
    • 1 篇 地质学
    • 1 篇 系统科学
  • 5 篇 管理学
    • 2 篇 公共管理
    • 2 篇 图书情报与档案管...
    • 1 篇 管理科学与工程(可...
    • 1 篇 工商管理
  • 1 篇 教育学
    • 1 篇 心理学(可授教育学...
  • 1 篇 农学

主题

  • 5 篇 visualization
  • 5 篇 training
  • 4 篇 correlation
  • 2 篇 support vector m...
  • 2 篇 semantic segment...
  • 2 篇 deep learning
  • 2 篇 magnetic resonan...
  • 2 篇 generative adver...
  • 2 篇 training data
  • 2 篇 image segmentati...
  • 2 篇 target tracking
  • 2 篇 electroencephalo...
  • 2 篇 neuroimaging
  • 2 篇 computational mo...
  • 2 篇 digital patholog...
  • 2 篇 convolutional co...
  • 2 篇 biological syste...
  • 2 篇 tumors
  • 2 篇 forecasting
  • 2 篇 attention

机构

  • 6 篇 artificial intel...
  • 6 篇 centre for biome...
  • 4 篇 image analytics
  • 4 篇 university of pe...
  • 4 篇 center for biome...
  • 4 篇 department of pa...
  • 4 篇 csiro data61
  • 3 篇 department of ra...
  • 3 篇 department of bi...
  • 3 篇 correspondece
  • 3 篇 department of ra...
  • 3 篇 department of ra...
  • 2 篇 image processing...
  • 2 篇 school of comput...
  • 2 篇 university of sc...
  • 2 篇 department of co...
  • 2 篇 center for artif...
  • 2 篇 laboratory of be...
  • 2 篇 universidad pomp...
  • 2 篇 translational bi...

作者

  • 6 篇 ilya m. nasralla...
  • 6 篇 guray erus
  • 6 篇 christos davatzi...
  • 5 篇 junhao wen
  • 5 篇 davatzikos chris...
  • 5 篇 elizabeth mamour...
  • 5 篇 haochang shou
  • 4 篇 he fan
  • 4 篇 david a. wolk
  • 4 篇 ahmed abdulkadir
  • 4 篇 huang xiaolin
  • 4 篇 erhan gundogdu
  • 4 篇 yuhan cui
  • 4 篇 he mingzhen
  • 3 篇 van huffel sabin...
  • 3 篇 treanor darren
  • 3 篇 zhijian yang
  • 3 篇 wang rongguang
  • 3 篇 li shen
  • 3 篇 sindhuja tirumal...

语言

  • 54 篇 英文
  • 5 篇 其他
检索条件"机构=Image Data Analytics"
59 条 记 录,以下是21-30 订阅
排序:
EMBEDDING SPACE AUGMENTATION FOR WEAKLY SUPERVISED LEARNING IN WHOLE-SLIDE imageS
arXiv
收藏 引用
arXiv 2022年
作者: Zaffar, Imaad Jaume, Guillaume Rajpoot, Nasir Mahmood, Faisal Department of Computer Science University College London United Kingdom Department of Pathology Brigham and Women's Hospital Harvard Medical School BostonMA United States Department of Pathology Massachusetts General Hospital Harvard Medical School BostonMA United States Cancer Program Broad Institute of Harvard and MIT CambridgeMA United States Data Science Program Dana-Farber Cancer Institute BostonMA United States Tissue Image Analytics Centre Department of Computer Science University of Warwick Coventry United Kingdom Department of Pathology University Hospitals Coventry and Warwickshire NHS Trust Coventry United Kingdom The Alan Turing Institute London United Kingdom
Multiple Instance Learning (MIL) is a widely employed framework for learning on gigapixel whole-slide images (WSIs) from WSI-level annotations. In most MIL based analytical pipelines for WSI-level analysis, the WSIs a... 详细信息
来源: 评论
Genetic variants underlying the neuro-anatomical signatures of hypertension measured on structural MRI
收藏 引用
Alzheimer's & Dementia 2023年 第S10期19卷
作者: Sindhuja Tirumalai Govindarajan Elizabeth Mamourian Yuhan Cui Junhao Wen Guray Erus Ahmed Abdulkadir Randa Melhem R Nick Bryan Haochang Shou David A. Wolk Ilya M. Nasrallah Christos Davatzikos Centre for Biomedical Image Computing and Analytics University of Pennsylvania Philadelphia PA USA Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL) Center for and Data Science for Integrated Diagnostics (AI2D) Perelman School of Medicine University of Pennsylvania Philadelphia PA USA University of Pennsylvania Health System Philadeplphia PA USA Department of Neurology University of Pennsylvania School of Medicine Philadelphia PA USA
Background Hypertension (HTN) is associated with gray matter (GM) atrophy and increased white matter hyperintensity (WMH) burden, increasing their susceptibility to Alzheimer’s disease and related dementias. We devel...
来源: 评论
P13.13.B INTERPRETABLE WHOLE SLIDE image PROGNOSTIC STRATIFICATION OF GLIOBLASTOMA PATIENTS FURTHERING DISEASE UNDERSTANDING
收藏 引用
Neuro-Oncology 2023年 第SUPPLEMENT_2期25卷 ii103–ii104页
作者: Baheti, B Innani, S Mehdiratta, G Nasrallah, M P Bakas, S Center for Artificial Intelligence and Data Science for Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA) University of Pennsylvania Philadelphia PA United States Department of Pathology and Laboratory Medicine Perelman School of Medicine University of Pennsylvania Philadelphia PA United States Department of Pathology and Laboratory Medicine Department of Radiology Perelman School of Medicine University of Pennsylvania Philadelphia PA United States
来源: 评论
OS03.6.A UNSUPERVISED CLUSTERING OF MORPHOLOGY PATTERNS ON WHOLE SLIDE imageS GUIDE PROGNOSTIC STRATIFICATION OF GLIOBLASTOMA PATIENTS
收藏 引用
Neuro-Oncology 2023年 第SUPPLEMENT_2期25卷 ii15-ii15页
作者: Baheti, B Innani, S Nasrallah, M P Bakas, S Center for Artificial Intelligence and Data Science for Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA) University of Pennsylvania Philadelphia PA United States Department of Pathology and Laboratory Medicine Perelman School of Medicine University of Pennsylvania Philadelphia PA United States Department of Pathology and Laboratory Medicine Department of Radiology Perelman School of Medicine University of Pennsylvania Philadelphia PA United States
来源: 评论
A Progressively-Trained Scale-Invariant and Boundary-Aware Deep Neural Network for the Automatic 3D Segmentation of Lung Lesions
A Progressively-Trained Scale-Invariant and Boundary-Aware D...
收藏 引用
IEEE Workshop on Applications of Computer Vision (WACV)
作者: Bo Zhou Randolph Crawford Belma Dogdas Gregory Goldmacher Antong Chen School of Computer Science Carnegie Mellon University Pittsburgh PA USA Image Data Analytics Merck & Co. Inc. West Point PA USA Image Data Analytics Merck & Co. Inc. Rahway NJ USA Translational Biomarkers Merck & Co. Inc. West Point PA USA
Volumetric segmentation of lesions on CT scans is important for many types of analysis, including lesion growth kinetic modeling in clinical trials and machine learning of radiomic features. Manual segmentation is lab... 详细信息
来源: 评论
Prediction of functional therapeutic response to thrombectomy in acute stroke using neural networks
收藏 引用
Clinical Neurophysiology 2024年 159卷 e5-e5页
作者: Stoll, K. von Braun, M. Kürsten, D. Welle, F. Wawrzyniak, M. Groos, A. Klingbeil, J. Stockert, A. Kaiser, D.P.O. Kellner, E. Reisert, M. Hoffmann, K. Scheuermann, G. Gillmann, C. Saur, D. Neuroimaging Laboratory Department of Neurology University of Leipzig Medical Center Leipzig Germany Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI) Leipzig University Leipzig Germany Institute of Neuroradiology University Medical Center Carl Gustav Carus Dresden Germany Medical Physics Department of Diagnostic and Interventional Radiology Medical Center – University of Freiburg Freiburg Germany Institute of Neuroradiology University of Leipzig Medical Center Leipzig Germany Image and Signal Processing Group Institute for Informatics Leipzig University Leipzig Germany
来源: 评论
Attention-guided sampling for colorectal cancer analysis with digital pathology
收藏 引用
Journal of Pathology Informatics 2022年 13卷 100110-100110页
作者: Broad, Andrew Wright, Alexander I. de Kamps, Marc Treanor, Darren School of Computing University of Leeds Sir William Henry Bragg Building Woodhouse Lane UK Leeds LS2 9BW United Kingdom Leeds Institute for Data Analytics University of Leeds Level 11 Worsley Building Clarendon Way UK Leeds LS2 9NL United Kingdom Leeds Teaching Hospitals NHS Trust Beckett St Harehills UK Leeds LS9 7TF United Kingdom Division of Pathology and Data Analytics Leeds Institute of Medical Research University of Leeds St James's University Hospital UK Leeds LS9 7TF United Kingdom The Alan Turing Institute 96 Euston Road UK London NW1 2DB United Kingdom University of Leeds UK Leeds LS2 9JT United Kingdom Department of Clinical Pathology Department of Clinical and Experimental Medicine Linköping University Linköping Sweden Center for Medical Image Science and Visualization (CMIV) Linköping University Linköping Sweden
Improvements to patient care through the development of automated image analysis in pathology are restricted by the small image patch size that can be processed by convolutional neural networks (CNNs), when compared t... 详细信息
来源: 评论
Overcoming thresholds – Utilizing convolutional neural networks for predicting individual thrombectomy response in acute ischemic stroke
收藏 引用
Clinical Neurophysiology 2024年 159卷 e8-e8页
作者: von Braun, M. Scholl, K. Peter, L. Welle, F. Schneider, H.R. Wawrzyniak, M. Kaiser, D.P.O. Henkelmann, J. Prasse, G. Kellner, E. Reisert, M. Klingbeil, J. Stockert, A. Lobsien, D. Hoffmann, K. Scheuermann, G. Gilmann, C. Saur, D. Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI Dresden/Leipzig) Leipzig University Germany Neuroimaging Laboratory Department of Neurology University of Leipzig Medical Center Germany Institute of Neuroradiology University Medical Center Carl Gustav Carus Dresden Germany Department of Radiology University of Leipzig Medical Center Germany Institute of Neuroradiology University of Leipzig Medical Center Germany Medical Physics Department of Diagnostic and Interventional Radiology Medical Center – University of Freiburg Germany Institute for Diagnostic and Interventional Radiology and Neuroradiology Helios Hospital Erfurt Germany Image and Signal Processing Group Institute for Informatics Leipzig University Germany
来源: 评论
IMG-15. Radiomic Profiling of Pediatric Low-Grade Glioma Improves Risk Stratification Beyond Clinical Measures
收藏 引用
Neuro-Oncology 2022年 第SUPPLEMENT_1期24卷 i80–i80页
作者: Kazerooni, Anahita Fathi Arif, Sherjeel Haldar, Debanjan Madhogarhia, Rachel Familiar, Ariana Bagheri, Sina Anderson, Hannah Ware, Jeffrey B Vossough, Arastoo Storm, Phillip B Resnick, Adam C Davatzikos, Christos Nabavizadeh, Ali Center for Biomedical Image Computing and Analytics (CBICA) University of Pennsylvania Philadelphia PA USA Department of Radiology Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Division of Neurosurgery Children’s Hospital of Philadelphia Philadelphia PA USA Institute of Translational Medicine and Therapeutics Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Center for Data-Driven Discovery in Biomedicine (D3b) Children’s Hospital of Philadelphia Philadelphia PA USA
PURPOSE: Treatment response is heterogeneous among patients with pediatric low-grade glioma (pLGG), the most frequent childhood brain tumor. Upfront prediction of progression-free survival (PFS) may facilitate more pe...
来源: 评论
A multivariate MRI model of Alzheimer’s disease risk is associated with clinical diagnosis, PET imaging, and plasma biomarkers in a mixed dementia sample
收藏 引用
Alzheimer's & Dementia 2023年 第S10期19卷
作者: Jeffrey S Phillips Sindhuja Tirumalai Govindarajan Gyujoon Hwang Guray Erus Katheryn A Q Cousins Sandhitsu R. Das David A. Wolk David J. Irwin Murray Grossman Ilya M. Nasrallah Christos Davatzikos Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Centre for Biomedical Image Computing and Analytics University of Pennsylvania Philadelphia PA USA Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL) Center for and Data Science for Integrated Diagnostics (AI2D) Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Penn Alzheimer’s Disease Research Center University of Pennsylvania Philadelphia PA USA Frontotemporal Degeneration Center Department of Neurology Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Department of Radiology University of Pennsylvania Philadelphia PA USA
Background We sought to validate two structural MRI-based brain health models: Spatial Pattern of Atrophy for REcognition of Alzheimer’s disease (SPARE-AD) and SPARE-Brain Age Gap (SPARE-BAG), which estimates the dis...
来源: 评论