咨询与建议

限定检索结果

文献类型

  • 52 篇 会议
  • 33 篇 期刊文献

馆藏范围

  • 85 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 68 篇 工学
    • 47 篇 计算机科学与技术...
    • 42 篇 软件工程
    • 20 篇 信息与通信工程
    • 14 篇 控制科学与工程
    • 12 篇 光学工程
    • 12 篇 生物医学工程(可授...
    • 10 篇 生物工程
    • 6 篇 电子科学与技术(可...
    • 5 篇 机械工程
    • 4 篇 力学(可授工学、理...
    • 4 篇 航空宇航科学与技...
    • 3 篇 电气工程
    • 3 篇 建筑学
    • 2 篇 仪器科学与技术
    • 2 篇 土木工程
    • 2 篇 交通运输工程
  • 46 篇 理学
    • 29 篇 数学
    • 18 篇 物理学
    • 11 篇 生物学
    • 7 篇 统计学(可授理学、...
    • 2 篇 系统科学
  • 11 篇 管理学
    • 8 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
    • 3 篇 工商管理
  • 4 篇 医学
    • 3 篇 基础医学(可授医学...
    • 3 篇 临床医学
    • 3 篇 药学(可授医学、理...
    • 2 篇 公共卫生与预防医...
  • 2 篇 军事学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 4 篇 motion planning
  • 3 篇 image segmentati...
  • 3 篇 pattern recognit...
  • 2 篇 image enhancemen...
  • 2 篇 object detection
  • 2 篇 support vector m...
  • 2 篇 compressed sensi...
  • 2 篇 deep learning
  • 2 篇 three-dimensiona...
  • 2 篇 neural networks
  • 2 篇 face recognition
  • 2 篇 lifting scheme
  • 2 篇 feature extracti...
  • 2 篇 biomedical imagi...
  • 2 篇 estimation
  • 2 篇 anisotropic diff...
  • 2 篇 pathology
  • 2 篇 robustness
  • 1 篇 pd control
  • 1 篇 falling point tr...

机构

  • 11 篇 institute of ima...
  • 4 篇 key laboratory o...
  • 3 篇 college of life ...
  • 3 篇 shanghai jiao to...
  • 3 篇 institute for pa...
  • 3 篇 artificial intel...
  • 2 篇 state education ...
  • 2 篇 nanchang hangkon...
  • 2 篇 institute of ima...
  • 2 篇 institute of med...
  • 2 篇 institute of ima...
  • 2 篇 pattern recognit...
  • 2 篇 pattern recognit...
  • 2 篇 national institu...
  • 2 篇 department of im...
  • 2 篇 siemens healthca...
  • 2 篇 state key lab. f...
  • 2 篇 image processing...
  • 2 篇 inst. for patter...
  • 2 篇 school of electr...

作者

  • 8 篇 yang jie
  • 5 篇 ding mingyue
  • 5 篇 maier andreas
  • 5 篇 tian jinwen
  • 5 篇 liu jian
  • 5 篇 zhihua chen
  • 4 篇 jung keechul
  • 4 篇 cai chao
  • 4 篇 jie yang
  • 4 篇 huang yixing
  • 4 篇 guo ping
  • 4 篇 huang xiaolin
  • 3 篇 han junghyun
  • 3 篇 yang yang
  • 3 篇 jain anil k.
  • 3 篇 shen hong-bin
  • 3 篇 li shidong
  • 3 篇 kim kwang in
  • 2 篇 chen gong
  • 2 篇 蔡超

语言

  • 85 篇 英文
检索条件"机构=Image Processing & Pattern Recognition Lab"
85 条 记 录,以下是71-80 订阅
排序:
Local topology preservation for vascular centerline matching using a hybrid mixture model
Local topology preservation for vascular centerline matching...
收藏 引用
IEEE Symposium on Nuclear Science (NSS/MIC)
作者: Siming Bayer Zhiwei Zhai Maddalena Strumia Xiaoguang Tong Ying Gao Marius Staring Berend Stoel Martin Ostermeier Rebecca Fahrig Arya Nabavi Andreas Maier Nishant Ravikumar Pattern Recognition Lab Friedrich-Alexander Universtiy Erlangen Germany Division of Image Processing Leiden University Medical Center Leiden Netherlands Siemens Healthcare GmbH Forchheim Germany Tianjin Huanhu Hospital Tianjin China Siemens Healthineers Ltd Beijing China Department of Neurosurgery Nordstadt Hospital KRH Hannover Germany
Non-rigid registration is essential for a wide range of clinical applications, such as intraoperative image-guidance and postoperative follow-up assessment, and longitudinal image analysis for disease diagnosis and mo... 详细信息
来源: 评论
The effect of data augmentation on classification of atrial fibrillation in short single-lead ecg signals using deep neural networks
arXiv
收藏 引用
arXiv 2020年
作者: Hatamian, Faezeh Nejati Ravikumar, Nishant Vesal, Sulaiman Kemeth, Felix P. Struck, Matthias Maier, Andreas Department of Image Processing and Medical Technology Fraunhofer Institute for Integrated Circuits IIS Erlangen Germany Pattern Recognition Lab Department of Computer Science Friedrich-Alexander University Erlangen-Nrnberg Erlangen Germany School of Computing LICAMM Leeds Institute of Cardiovascular and Metabolic Medicine School of Medicine University of Leeds United Kingdom
Cardiovascular diseases are the most common cause of mortality worldwide. Detection of atrial fibrillation (AF) in the asymptomatic stage can help prevent strokes. It also improves clinical decision making through the... 详细信息
来源: 评论
Edge-Aware Graph Attention Network for Ratio of Edge-User Estimation in Mobile Networks
Edge-Aware Graph Attention Network for Ratio of Edge-User Es...
收藏 引用
International Conference on pattern recognition
作者: Jiehui Deng Sheng Wan Xiang Wang Enmei Tu Xiaolin Huang Jie Yang Chen Gong PCA Lab the Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China Hong Kong Polytechnic University Hong Kong SAR China
Estimating the Ratio of Edge-Users (REU) is an important issue in mobile networks, as it helps the subsequent adjustment of loads in different cells. However, existing approaches usually determine the REU manually, wh... 详细信息
来源: 评论
A Parallel-based Lifting Algorithm and VLSI Architecture for DWT
收藏 引用
Journal of Electronics(China) 2006年 第2期23卷 244-248页
作者: Xiong Chengyi Tian Jinwen Liu Jian Gao Zhirong The State Key Lab of Education Commission for Image Processing and Intelligent Control Institute of Pattern Recognition & Artificial Intelligence Huazhong Univ. of Science & Tech. Wuhan 430074 China College of Electronic Info. Eng. South- Center Univ. for Nationalities Wuhan 430074 China Dept of Computer Science Wuhan Univ. of Science & Eng. Wuhan 430074 China
A novel Parallel-Based Lifting Algorithm (PBLA) for Discrete Wavelet Transform (DWT), exploiting the parallelism of arithmetic operations in all lifting steps, is proposed in this paper. It leads to reduce the cri... 详细信息
来源: 评论
Multi-level graph convolutional network with automatic graph learning for hyperspectral image classification
arXiv
收藏 引用
arXiv 2020年
作者: Wan, Sheng Gong, Chen Pan, Shirui Yang, Jie Yang, Jian PCA Lab Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education Jiangsu Key Laboratory of Image Video Understanding for Social Security School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing210094 China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai200240 China Faculty of Information Technology Monash University ClaytonVIC3800 Australia
Nowadays, deep learning methods, especially the Graph Convolutional Network (GCN), have shown impressive performance in hyperspectral image (HSI) classification. However, the current GCN-based methods treat graph cons... 详细信息
来源: 评论
Rotation equivariant feature image pyramid network for object detection in optical remote sensing imagery
arXiv
收藏 引用
arXiv 2021年
作者: Shamsolmoali, Pourya Zareapoor, Masoumeh Chanussot, Jocelyn Zhou, Huiyu Yang, Jie The Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai200240 China The GIPSA-Lab Université Grenoble Alpes CNRS Grenoble INP Grenoble38000 France The Faculty of Electrical and Computer Engineering University of Iceland Reykjavik101 Iceland The School of Informatics University of Leicester LeicesterLE1 7RH United Kingdom
To read the paper please go to IEEE Transactions on Geoscience and Remote Sensing on IEEE Xplore. Detection of objects is extremely important in various aerial vision-based applications. Over the last few years, the m... 详细信息
来源: 评论
The Effect of Data Augmentation on Classification of Atrial Fibrillation in Short Single-Lead ECG Signals Using Deep Neural Networks
The Effect of Data Augmentation on Classification of Atrial ...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal processing
作者: Faezeh Nejati Hatamian Nishant Ravikumar Sulaiman Vesal Felix P. Kemeth Matthias Struck Andreas Maier Department of Image Processing and Medical Technology Fraunhofer Institute for Integrated Circuits IIS Erlangen Germany Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB) School of Computing LICAMM Leeds Institute of Cardiovascular and Metabolic Medicine School of Medicine University of Leeds United Kingdom Pattern Recognition Lab Friedrich-Alexander University Erlangen-Nürnberg Erlangen Germany
Cardiovascular diseases are the most common cause of mortality worldwide. Detection of atrial fibrillation (AF) in the asymptomatic stage can help prevent strokes. It also improves clinical decision making through the...
来源: 评论
Efficient spatialtemporal context modeling for action recognition?
arXiv
收藏 引用
arXiv 2021年
作者: Cao, Congqi Lu, Yue Zhang, Yifan Jiang, Dongmei Zhang, Yanning Natl. Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology Shaanxi Provincial Key Lab on Speech and Image Information Processing School of Computer Science Northwestern Poly-technical University Xi'an710129 China National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences University of Chinese Academy of Sciences Beijing100190 China
Contextual information plays an important role in action recognition. Local operations have difficulty to model the relation between two elements with a long-distance interval. However, directly modeling the contextua... 详细信息
来源: 评论
Learning data-adaptive non-parametric kernels
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2020年 第1期21卷 8590-8628页
作者: Fanghui Liu Xiaolin Huang Chen Gong Jie Yang Li Li Department of Electrical Engineering ESAT-STADIUS KU Leuven Belgium Institute of Image Processing and Pattern Recognition Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China PCA Lab Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education School of Computer Science and Engineering Nanjing University of Science and Technology China and Department of Computing Hong Kong Polytechnic University Hong Kong SAR China Department of Automation BNRist Tsinghua University China
In this paper, we propose a data-adaptive non-parametric kernel learning framework in margin based kernel methods. In model formulation, given an initial kernel matrix, a data-adaptive matrix with two constraints is i... 详细信息
来源: 评论
AIM 2020 Challenge on image Extreme Inpainting  16th
AIM 2020 Challenge on Image Extreme Inpainting
收藏 引用
Workshops held at the 16th European Conference on Computer Vision, ECCV 2020
作者: Ntavelis, Evangelos Romero, Andrés Bigdeli, Siavash Timofte, Radu Hui, Zheng Wang, Xiumei Gao, Xinbo Shin, Chajin Kim, Taeoh Son, Hanbin Lee, Sangyoun Li, Chao Li, Fu He, Dongliang Wen, Shilei Ding, Errui Bai, Mengmeng Li, Shuchen Zeng, Yu Lin, Zhe Yang, Jimei Zhang, Jianming Shechtman, Eli Lu, Huchuan Zeng, Weijian Ni, Haopeng Cai, Yiyang Li, Chenghua Xu, Dejia Wu, Haoning Han, Yu Nadim, Uddin S. M. Jang, Hae Woong Ahmed, Soikat Hasan Yoon, Jungmin Jung, Yong Ju Li, Chu-Tak Liu, Zhi-Song Wang, Li-Wen Siu, Wan-Chi Lun, Daniel P. K. Suin, Maitreya Purohit, Kuldeep Rajagopalan, A.N. Narang, Pratik Mandal, Murari Chauhan, Pranjal Singh Computer Vision Lab ETH Zürich Zürich Switzerland CSEM Neuchâtel Switzerland School of Electronic Engineering Xidian University Xi’an China Image and Video Pattern Recognition Laboratory School of Electrical and Electronic Engineering Yonsei University Seoul Korea Republic of Baidu Inc. Beijing China Beijing China Dalian University of Technology Dalian China Adobe San Jose United States Rensselaer Polytechnic Institute Troy United States Peking University Beijing China Lab Gachon University Seongnam Korea Republic of Centre for Multimedia Signal Processing Department of Electronic and Information Engineering The Hong Kong Polytechnic University Hong Kong China Indian Institute of Technology Madras Chennai India BITS Pilani Pilani India MNIT Jaipur Jaipur India
This paper reviews the AIM 2020 challenge on extreme image inpainting. This report focuses on proposed solutions and results for two different tracks on extreme image inpainting: classical image inpainting and semanti... 详细信息
来源: 评论