A considerable amount of research work has been done for texture classification using local or global feature extraction methods. Inspired by Weber's Law, a simple and robust Weber Local Descriptor (WLD) is a rece...
详细信息
A considerable amount of research work has been done for texture classification using local or global feature extraction methods. Inspired by Weber's Law, a simple and robust Weber Local Descriptor (WLD) is a recently developed for local feature extraction. This WLD method did not consider the contrast information. In order to improve texture classification accuracy, we propose a hybrid approach that combines the WLD with contrast information in this paper. It utilizes the histogram of two complementary features WLD and the image variance calculated with the Probability Weighted Moments. Support vector machine is used for classification. The comparison of the proposed method with state of art methods like local binary pattern and WLD is experimental investigated on two publically available dataset, named as Brodatz and KTH-TIPS2-a. Results show that our proposed method outperforms over the state of art methods for texture classification.
The generative adversarial network(GAN)is first proposed in 2014,and this kind of network model is machine learning systems that can learn to measure a given distribution of data,one of the most important applications...
详细信息
The generative adversarial network(GAN)is first proposed in 2014,and this kind of network model is machine learning systems that can learn to measure a given distribution of data,one of the most important applications is style *** transfer is a class of vision and graphics problems where the goal is to learn the mapping between an input image and an output ***-GAN is a classic GAN model,which has a wide range of scenarios in style *** its unsupervised learning characteristics,the mapping is easy to be learned between an input image and an output ***,it is difficult for CYCLE-GAN to converge and generate high-quality *** order to solve this problem,spectral normalization is introduced into each convolutional kernel of the *** convolutional kernel reaches Lipschitz stability constraint with adding spectral normalization and the value of the convolutional kernel is limited to[0,1],which promotes the training process of the proposed ***,we use pretrained model(VGG16)to control the loss of image content in the position of l1 *** avoid overfitting,l1 regularization term and l2 regularization term are both used in the object loss *** terms of Frechet Inception Distance(FID)score evaluation,our proposed model achieves outstanding performance and preserves more discriminative *** results show that the proposed model converges faster and achieves better FID scores than the state of the art.
Based on statistical learning theory, support vector machine (SVM) is a novel type of learning machine, and it contains polynomial, neural network and radial basis function (RBF) as special cases. The mapped least squ...
详细信息
Based on statistical learning theory, support vector machine (SVM) is a novel type of learning machine, and it contains polynomial, neural network and radial basis function (RBF) as special cases. The mapped least squares support vector machine (MLS-SVM) is a special least square SVM (LS-SVM), which extends the application of the SVM to the imageprocessing. Based on the MLS-SVM, a family of filters for the approximation of partial derivatives of the digital image surface is designed. Prior information (e.g., local dominant orientation) are incorporated in a two dimension weighted function. The weighted MLS-SVM with the radial basis function kernel is applied to design the proposed filters. Exemplary application of the proposed filters to fingerprint image segmentation is also presented.
Many vision-related processing tasks, including edge detection and image segmentation, can be performed more easily when all objects in the scene are in good focus. However, in practice, this may not be always feasibl...
详细信息
DSP/FPGA-based parallel architecture oriented to real-time imageprocessing applications is presented. The architecture is structured with high performance DSPs interconnected by FPGA. Within FPGA a FIFO interconnecti...
详细信息
Knowing the locations of nodes in wireless sensor networks (WSN) is essential for many applications. Nodes in a WSN can have multiple capabilities and exploiting one or more of the capabilities can help to solve the l...
详细信息
Knowing the locations of nodes in wireless sensor networks (WSN) is essential for many applications. Nodes in a WSN can have multiple capabilities and exploiting one or more of the capabilities can help to solve the localization problem. In this paper, we assume that each node in a WSN has the capability of distance measurement and present a location computation technique called linear intersection for node localization. We also propose an applied localization model using linear intersection and do some concerned experiments to estimate the location computation algorithm.
Recently, Discriminative Correlation Filter based trackers have increasingly become popular in the domain of visual object tracking, which is benefited by their effective and robustness in terms of tracking performanc...
详细信息
In this paper, a novel curve reconstruction method based on A* algorithm from a set of dense scattered points was proposed. Our method can not only reconstruct dense scattered points with single connected complicated ...
详细信息
In image database retrieval there are many classical similarity measures that can be used to find the target image, these measures are mostly belong to geometry model from the point of view of the data model, while li...
详细信息
In image database retrieval there are many classical similarity measures that can be used to find the target image, these measures are mostly belong to geometry model from the point of view of the data model, while little attention has been devoted to the studies on methods based on probability density distribution. In this paper we experimental investigate some probabilistic similarity measures, present two methods for design of the similarity function of two mixture Gaussian distributions, on the basis of the nearest neighbor rule and K nearest neighbor rule respectively. An experimental study was conducted to examine and evaluate the measures for application to image databases, and the experiment results show that the methods based on K nearest neighbor rule achieve better performance.
Segmentation becomes a difficult task if the objects and background are not homogeneous and having overlapping characteristics. Cattle segmentation from its background is required in several typical applications, such...
详细信息
Segmentation becomes a difficult task if the objects and background are not homogeneous and having overlapping characteristics. Cattle segmentation from its background is required in several typical applications, such as: the automatic cattle race classification. The cattle's fur detection which is inspired from the human skin detection is investigated in this paper for cattle and background segmentation in automatic beef cattle race classification. The Gaussian mixture model that was used in skin detection has been adopted to model Bali cow and Hybrid Ongole cow in this beef cattle race classification. The RGB color space and two texture descriptors are used as the features set. The addition of texture descriptor has increased the performance of the fur detection and automatic race classification. The GMM performs well but the noise and the complexity of the background lead to misclassification.
暂无评论