咨询与建议

限定检索结果

文献类型

  • 357 篇 会议
  • 162 篇 期刊文献

馆藏范围

  • 519 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 322 篇 工学
    • 205 篇 计算机科学与技术...
    • 181 篇 软件工程
    • 81 篇 信息与通信工程
    • 58 篇 控制科学与工程
    • 57 篇 光学工程
    • 43 篇 生物医学工程(可授...
    • 40 篇 电子科学与技术(可...
    • 38 篇 生物工程
    • 32 篇 机械工程
    • 29 篇 电气工程
    • 23 篇 化学工程与技术
    • 17 篇 仪器科学与技术
    • 10 篇 交通运输工程
    • 9 篇 力学(可授工学、理...
    • 8 篇 航空宇航科学与技...
    • 7 篇 建筑学
    • 7 篇 土木工程
  • 202 篇 理学
    • 114 篇 数学
    • 75 篇 物理学
    • 46 篇 生物学
    • 42 篇 统计学(可授理学、...
    • 24 篇 化学
    • 15 篇 系统科学
  • 73 篇 管理学
    • 43 篇 管理科学与工程(可...
    • 36 篇 图书情报与档案管...
    • 8 篇 工商管理
  • 29 篇 医学
    • 25 篇 临床医学
    • 18 篇 基础医学(可授医学...
    • 15 篇 药学(可授医学、理...
  • 6 篇 艺术学
    • 6 篇 设计学(可授艺术学...
  • 5 篇 经济学
  • 4 篇 法学
  • 3 篇 教育学
  • 3 篇 农学
  • 3 篇 军事学
  • 2 篇 文学
  • 1 篇 哲学

主题

  • 45 篇 feature extracti...
  • 38 篇 image processing
  • 37 篇 pattern recognit...
  • 32 篇 image segmentati...
  • 20 篇 support vector m...
  • 18 篇 laboratories
  • 16 篇 computer vision
  • 16 篇 training
  • 15 篇 object detection
  • 15 篇 principal compon...
  • 14 篇 image analysis
  • 13 篇 histograms
  • 13 篇 image reconstruc...
  • 13 篇 shape
  • 12 篇 robustness
  • 11 篇 neural networks
  • 11 篇 discrete wavelet...
  • 11 篇 kernel
  • 11 篇 artificial intel...
  • 10 篇 convolution

机构

  • 74 篇 image processing...
  • 35 篇 institute of ima...
  • 21 篇 school of inform...
  • 17 篇 key laboratory o...
  • 16 篇 institute for pa...
  • 16 篇 school of softwa...
  • 13 篇 school of comput...
  • 12 篇 key laboratory o...
  • 10 篇 key laboratory o...
  • 9 篇 institute of ima...
  • 9 篇 laboratory of im...
  • 8 篇 key laboratory o...
  • 7 篇 institute of pat...
  • 7 篇 institute of ima...
  • 6 篇 pattern recognit...
  • 6 篇 institute of ima...
  • 6 篇 institute of med...
  • 6 篇 state education ...
  • 6 篇 institute of ima...
  • 5 篇 university of ch...

作者

  • 64 篇 ping guo
  • 35 篇 yang jie
  • 27 篇 guo ping
  • 25 篇 qian yin
  • 23 篇 huang xiaolin
  • 18 篇 jie yang
  • 14 篇 liu jian
  • 12 篇 ding mingyue
  • 12 篇 zhang tianxu
  • 12 篇 li qishen
  • 12 篇 jian liu
  • 12 篇 shen hong-bin
  • 10 篇 he fan
  • 10 篇 qishen li
  • 9 篇 xin zheng
  • 9 篇 yang yang
  • 9 篇 tian jinwen
  • 9 篇 hong-bin shen
  • 9 篇 yin qian
  • 9 篇 mingyue ding

语言

  • 495 篇 英文
  • 16 篇 中文
  • 8 篇 其他
检索条件"机构=Image Processing & Pattern Recognition Laboratory"
519 条 记 录,以下是501-510 订阅
排序:
Abnormal resting-state EEG power and impaired inhibition control in young smokers
收藏 引用
Neuroscience Letters 2021年 第0期761卷 136120-136120页
作者: Dong, Fang Li, Xiaojian Zhang, Yunmiao Jia, Shaodi Zhang, Shidi Xue, Ting Ren, Yan Lv, Xiaoqi Yuan, Kai Yu, Dahua Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing School of Information Engineering Inner Mongolia University of Science and Technology Baotou 014010 Inner Mongolia China College of Information Engineering Inner Mongolia University of Technology Hohhot 010051 Inner Mongolia China School of Life Science and Technology Xidian University Xi'an 710071 Shaanxi China
Exposure to nicotine during adolescence may cause neurophysiological changes and increase the risks of developing nicotine dependence;it can even lead to lifelong smoking. The intake of nicotine may also lead to abnor... 详细信息
来源: 评论
CNN-based invertible wavelet scattering for the investigation of diffusion properties of the in vivo human heart in diffusion tensor imaging
arXiv
收藏 引用
arXiv 2019年
作者: Deng, Zeyu Wang, Lihui Kuai, Zixiang Chen, Qijian Cheng, Xinyu Yang, Feng Yang, Jie Zhu, Yuemin Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province College of Computer Science and Technology Guizhou University Guiyang550025 China Imaging Center Harbin Medical University Cancer Hospital Harbin150081 China School of Computer and Information Technology Beijing Jiaotong University Beijing100044 China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai200240 China University Lyon INSA Lyon CNRS Inserm IRP Metislab CREATIS UMR5220 U1206 LyonF-69621 France
In vivo diffusion tensor imaging (DTI) is a promising technique to investigate noninvasively the fiber structures of the in vivo human heart. However, signal loss due to motions remains a persistent problem in in vivo... 详细信息
来源: 评论
Relationship between pulmonary nodule malignancy and surrounding pleurae, airways and vessels: a quantitative study using the public LIDC-IDRI dataset
arXiv
收藏 引用
arXiv 2021年
作者: Qin, Yulei Gu, Yun Zhang, Hanxiao Yang, Jie Wang, Lihui Wang, Zhexin Yao, Feng Zhu, Yue-Min Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai200240 China Institute of Medical Robotics Shanghai Jiao Tong University Shanghai200240 China CREATIS INSA Lyon CNRS UMR 5220 INSERM U1206 Université de Lyon Villeurbanne69621 France Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province School of Computer Science and Technology Guizhou University Guiyang550025 China Department of Thoracic Surgery Shanghai Chest Hospital Shanghai Jiao Tong University Shanghai200025 China
Objectives: To investigate whether the pleurae, airways and vessels surrounding a nodule on non-contrast computed tomography (CT) can discriminate benign and malignant pulmonary nodules. Materials and Methods: The LID... 详细信息
来源: 评论
Learning tubule-sensitive CNNs for pulmonary airway and artery-vein segmentation in CT
arXiv
收藏 引用
arXiv 2020年
作者: Qin, Yulei Zheng, Hao Gu, Yun Huang, Xiaolin Yang, Jie Wang, Lihui Yao, Feng Zhu, Yue-Min Yang, Guang-Zhong Institute of Image Processing and Pattern Recognition Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province School of Computer Science and Technology Guizhou University Guiyang China Department of Thoracic Surgery Shanghai Chest Hospital Shanghai Jiao Tong University Shanghai China Université de Lyon INSA Lyon CREATIS CNRS INSERM UMR 5220 VilleurbanneU1206 France Institute of Medical Robotics School of Biomedical Engineering Shanghai Jiao Tong University Shanghai China
Training convolutional neural networks (CNNs) for segmentation of pulmonary airway, artery, and vein is challenging due to sparse supervisory signals caused by the severe class imbalance between tubular targets and ba... 详细信息
来源: 评论
AIM 2020 Challenge on image Extreme Inpainting  16th
AIM 2020 Challenge on Image Extreme Inpainting
收藏 引用
Workshops held at the 16th European Conference on Computer Vision, ECCV 2020
作者: Ntavelis, Evangelos Romero, Andrés Bigdeli, Siavash Timofte, Radu Hui, Zheng Wang, Xiumei Gao, Xinbo Shin, Chajin Kim, Taeoh Son, Hanbin Lee, Sangyoun Li, Chao Li, Fu He, Dongliang Wen, Shilei Ding, Errui Bai, Mengmeng Li, Shuchen Zeng, Yu Lin, Zhe Yang, Jimei Zhang, Jianming Shechtman, Eli Lu, Huchuan Zeng, Weijian Ni, Haopeng Cai, Yiyang Li, Chenghua Xu, Dejia Wu, Haoning Han, Yu Nadim, Uddin S. M. Jang, Hae Woong Ahmed, Soikat Hasan Yoon, Jungmin Jung, Yong Ju Li, Chu-Tak Liu, Zhi-Song Wang, Li-Wen Siu, Wan-Chi Lun, Daniel P. K. Suin, Maitreya Purohit, Kuldeep Rajagopalan, A.N. Narang, Pratik Mandal, Murari Chauhan, Pranjal Singh Computer Vision Lab ETH Zürich Zürich Switzerland CSEM Neuchâtel Switzerland School of Electronic Engineering Xidian University Xi’an China Image and Video Pattern Recognition Laboratory School of Electrical and Electronic Engineering Yonsei University Seoul Korea Republic of Baidu Inc. Beijing China Beijing China Dalian University of Technology Dalian China Adobe San Jose United States Rensselaer Polytechnic Institute Troy United States Peking University Beijing China Lab Gachon University Seongnam Korea Republic of Centre for Multimedia Signal Processing Department of Electronic and Information Engineering The Hong Kong Polytechnic University Hong Kong China Indian Institute of Technology Madras Chennai India BITS Pilani Pilani India MNIT Jaipur Jaipur India
This paper reviews the AIM 2020 challenge on extreme image inpainting. This report focuses on proposed solutions and results for two different tracks on extreme image inpainting: classical image inpainting and semanti... 详细信息
来源: 评论
An Evolutionary Real-Time 3D Route Planner for Aircraft
收藏 引用
Chinese Journal of Systems Engineering and Electronics 2003年 第1期000卷
A novel evolutionary route planner for aircraft is proposed in this paper. In the new planner, individual candidates are evaluated with respect to the workspace, thus the computation of the configuration space is not ... 详细信息
来源: 评论
EEG-Based Brain-Computer Interfaces Are Vulnerable to Backdoor Attacks
arXiv
收藏 引用
arXiv 2020年
作者: Meng, Lubin Huang, Jian Zeng, Zhigang Jiang, Xue Yu, Shan Jung, Tzyy-Ping Lin, Chin-Teng Chavarriaga, Ricardo Wu, Dongrui Ministry of Education Key Laboratory of Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan China Brainnetome Center National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing China La Jolla CA United States Center for Advanced Neurological Engineering Institute of Engineering in Medicine Ucsd La Jolla CA United States Centre of Artificial Intelligence Faculty of Engineering and Information Technology University of Technology Sydney Australia Zhaw DataLab Zürich University of Applied Sciences Winterthur8401 Switzerland
Research and development of electroencephalogram (EEG) based brain-computer interfaces (BCIs) have advanced rapidly, partly due to deeper understanding of the brain and wide adoption of sophisticated machine learning ... 详细信息
来源: 评论
EEG-Based Brain-Computer Interfaces Are Vulnerable to Backdoor Attacks
Research Square
收藏 引用
Research Square 2021年
作者: Meng, Lubin Huang, Jian Zeng, Zhigang Jiang, Xue Yu, Shan Jung, Tzyy-Ping Lin, Chin-Teng Chavarriaga, Ricardo Wu, Dongrui Ministry of Education Key Laboratory of Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan China Brainnetome Center and National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing China La Jolla CA United States Center for Advanced Neurological Engineering Institute of Engineering in Medicine UCSD La Jolla CA United States Centre of Artificial Intelligence Faculty of Engineering and Information Technology University of Technology Sydney Australia ZHAW DataLab Zürich University of Applied Sciences Winterthur8401 Switzerland
Research and development of electroencephalogram (EEG) based brain-computer interfaces (BCIs) have advanced rapidly, partly due to the wide adoption of sophisticated machine learning approaches for decoding the EEG si... 详细信息
来源: 评论
A Region-Based Representation of images in MARS
收藏 引用
Journal of VLSI Signal processing Systems for Signal, image, and Video Technology 1998年 第1-2期20卷 137-150页
作者: Servetto, Sergio D. Rui, Yong Ramchandran, Kannan Huang, Thomas S. Beckman Inst. Adv. Sci. and Technol. Univ. Illinois at Urbana-Champaign Urbana IL 61801 United States Universidad Nacional de La Plata Argentina Univ. Illinois at Urbana-Champaign United States Comp. Res. Adv. Applications Group IBM Argentina Argentina Image Formation and Processing Group Beckman Institute UIUC United States Department of Computer Science UNLP Argentina Dept. of Elec. and Comp. Engineering UIUC United States Multimedia Commun. Res. Department Bell Laboratories Murray Hill NJ United States Info. Sciences Research Department AT and T Labs. Florham Park NJ United States Department of Computer Science UIUC United States Southeast University China Tsinghua University China University of Illinois Urbana-Champaign IL United States Image Formation and Processing Group Beckman Inst. Advance Sci. Technol. UIUC United States Vis. Technol. Grp. of Microsoft Res. Redmond WA United States City College of New York United States Columbia University United States AT and T Bell Labs. United States Ctr. for Telecommunications Research Columbia University United States Elec. and Comp. Eng. Department United States Beckman Institute Coordinated Science Laboratory IL United States IEEE Signal Processing Society United States IEEE IMDSP Technical Committee United States IEEE Transactions on Image Proc. United States National Taiwan University Taipei Taiwan Massachusetts Inst. of Technology Cambridge MA United States Department of Electrical Engineering MIT United States School of Electrical Engineering United States Lab. for Info. and Signal Processing Purdue University United States Dept. of Elec. and Comp. Engineering United States Coordinated Science Laboratory United States Image Formation and Processing Group Beckman Inst. Adv. Sci. and Technol. United States MIT Lincoln Laboratory IBM Thomas J. Watson Research Center Rheinishes Landes Museum Bonn Germany Swiss Institutes of Technology Zurich Switzerland Swiss Institutes of Technology Lausanne S
We study the problem of representing images within a multimedia Database Management System (DBMS), in order to support fast retrieval operations without compromising storage efficiency. To achieve this goal, we propos...
来源: 评论
Varifocal-Net: A Chromosome Classification Approach Using Deep Convolutional Networks
arXiv
收藏 引用
arXiv 2018年
作者: Qin, Yulei Wen, Juan Zheng, Hao Huang, Xiaolin Yang, Jie Song, Ning Zhu, Yue-Min Wu, Lingqian Yang, Guang-Zhong Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai200240 China Center for Medical Genetics School of Life Sciences Central South University Changsha410078 China Shanghai Key Laboratory of Reproductive Medicine School of Medicine Shanghai Jiao Tong University Shanghai200025 China Diagens-Hangzhou Hangzhou311121 China University Lyon INSA Lyon CNRS INSERM CREATIS UMR 5220 U1206F-69621 France Hamlyn Centre for Robotic Surgery Imperial College London SW72AZ United Kingdom
Chromosome classification is critical for karyotyping in abnormality diagnosis. To expedite the diagnosis, we present a novel method named Varifocal-Net for simultaneous classification of chromosomes type and polarity... 详细信息
来源: 评论