image annotation is the process of assigning proper keywords to describe the content of a given image, which can be regarded as a problem of multi-object image classification. In this paper, a general multi-label anno...
详细信息
ISBN:
(纸本)9781457720086
image annotation is the process of assigning proper keywords to describe the content of a given image, which can be regarded as a problem of multi-object image classification. In this paper, a general multi-label annotation algorithm is proposed, which is based on sparse representation theory and employs a multi-level decision method to deal with the multi-object classification problem. The experimental results show that the proposed algorithm can provide more promising results compared with the traditional classification based image annotation methods.
In wireless sensor networks, target classification differs from that in centralized sensing systems because of the distributed detection, wireless communication and limited resources. We study the classification probl...
详细信息
In wireless sensor networks, target classification differs from that in centralized sensing systems because of the distributed detection, wireless communication and limited resources. We study the classification problem of moving vehicles in wireless sensor networks using acoustic signals emitted from vehicles. Three algorithms including wavelet decomposition, weighted k-nearest-neighbor and Dempster-Shafer theory are combined in this paper. Finally, we use real world experimental data to validate the classification methods. The result shows that wavelet based feature extraction method can extract stable features from acoustic signals. By fusion with Dempster's rule, the classification performance is improved.
Pulsars search has always been one of the most concerned problem in the field of astronomy. Nowadays, with the development of astronomical instruments and observation technology, the amount of data is getting bigger a...
详细信息
Pulsars search has always been one of the most concerned problem in the field of astronomy. Nowadays, with the development of astronomical instruments and observation technology, the amount of data is getting bigger and bigger. Radio pulsar surveys have generated and will generate vast amounts of data. To handle big data, developing new technologies and frameworks to efficiently and accurately analyze these data become increasing urgent. The number of positive and negative samples in pulsar candidate data set is very unbalanced, if we only use these a few positive samples to train a deep neural network (DNN), the trained DNN is prone because of the problem of overfitting and will affect the generalization ability. Motivated by the mixtures of experts network architecture, we proposed a hierarchical model for pulsar candidate selection which assembles a set of trained base classifiers. Moreover, training a neural network always takes a lot of time because of using gradient descent (GD) based algorithm. In this work, we utilize the pseudoinverse learning algorithm instead of GD based algorithm to train proposed model. With the designed network architecture and adopted training algorithm, our model has the advantages not only with high steady-state precision but also good generalization performance.
Complex scene generation is an important and challenging image synthesis task. Though latent space based conditional generative methods get impressive results, the accurate locating of objects for more detailed situat...
详细信息
A novel evolutionary route planner for aircraft is proposed in this paper. In the new planner, individual candidates are evaluated with respect to the workspace, thus the computation of the configuration space is not ...
详细信息
A novel evolutionary route planner for aircraft is proposed in this paper. In the new planner, individual candidates are evaluated with respect to the workspace, thus the computation of the configuration space is not required. By using problem-specific chromosome structure and genetic operators, the routes are generated in real time, with different mission constraints such as minimum route leg length and flying altitude, maximum turning angle, maximum climbing/diving angle and route distance constraint taken into account.
A considerable amount of research work has been done for texture classification using local or global feature extraction methods. Inspired by Weber's Law, a simple and robust Weber Local Descriptor (WLD) is a rece...
详细信息
A considerable amount of research work has been done for texture classification using local or global feature extraction methods. Inspired by Weber's Law, a simple and robust Weber Local Descriptor (WLD) is a recently developed for local feature extraction. This WLD method did not consider the contrast information. In order to improve texture classification accuracy, we propose a hybrid approach that combines the WLD with contrast information in this paper. It utilizes the histogram of two complementary features WLD and the image variance calculated with the Probability Weighted Moments. Support vector machine is used for classification. The comparison of the proposed method with state of art methods like local binary pattern and WLD is experimental investigated on two publically available dataset, named as Brodatz and KTH-TIPS2-a. Results show that our proposed method outperforms over the state of art methods for texture classification.
The generative adversarial network(GAN)is first proposed in 2014,and this kind of network model is machine learning systems that can learn to measure a given distribution of data,one of the most important applications...
详细信息
The generative adversarial network(GAN)is first proposed in 2014,and this kind of network model is machine learning systems that can learn to measure a given distribution of data,one of the most important applications is style *** transfer is a class of vision and graphics problems where the goal is to learn the mapping between an input image and an output ***-GAN is a classic GAN model,which has a wide range of scenarios in style *** its unsupervised learning characteristics,the mapping is easy to be learned between an input image and an output ***,it is difficult for CYCLE-GAN to converge and generate high-quality *** order to solve this problem,spectral normalization is introduced into each convolutional kernel of the *** convolutional kernel reaches Lipschitz stability constraint with adding spectral normalization and the value of the convolutional kernel is limited to[0,1],which promotes the training process of the proposed ***,we use pretrained model(VGG16)to control the loss of image content in the position of l1 *** avoid overfitting,l1 regularization term and l2 regularization term are both used in the object loss *** terms of Frechet Inception Distance(FID)score evaluation,our proposed model achieves outstanding performance and preserves more discriminative *** results show that the proposed model converges faster and achieves better FID scores than the state of the art.
Based on statistical learning theory, support vector machine (SVM) is a novel type of learning machine, and it contains polynomial, neural network and radial basis function (RBF) as special cases. The mapped least squ...
详细信息
Based on statistical learning theory, support vector machine (SVM) is a novel type of learning machine, and it contains polynomial, neural network and radial basis function (RBF) as special cases. The mapped least squares support vector machine (MLS-SVM) is a special least square SVM (LS-SVM), which extends the application of the SVM to the imageprocessing. Based on the MLS-SVM, a family of filters for the approximation of partial derivatives of the digital image surface is designed. Prior information (e.g., local dominant orientation) are incorporated in a two dimension weighted function. The weighted MLS-SVM with the radial basis function kernel is applied to design the proposed filters. Exemplary application of the proposed filters to fingerprint image segmentation is also presented.
Many vision-related processing tasks, including edge detection and image segmentation, can be performed more easily when all objects in the scene are in good focus. However, in practice, this may not be always feasibl...
详细信息
DSP/FPGA-based parallel architecture oriented to real-time imageprocessing applications is presented. The architecture is structured with high performance DSPs interconnected by FPGA. Within FPGA a FIFO interconnecti...
详细信息
暂无评论