咨询与建议

限定检索结果

文献类型

  • 4 篇 会议
  • 3 篇 期刊文献

馆藏范围

  • 7 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3 篇 工学
    • 2 篇 电子科学与技术(可...
    • 1 篇 光学工程
    • 1 篇 仪器科学与技术
    • 1 篇 电气工程
    • 1 篇 信息与通信工程
    • 1 篇 计算机科学与技术...
    • 1 篇 生物医学工程(可授...
    • 1 篇 软件工程
    • 1 篇 生物工程
  • 1 篇 理学
    • 1 篇 物理学
    • 1 篇 生物学
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学
    • 1 篇 药学(可授医学、理...
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 1 篇 entertainment in...
  • 1 篇 vegetation mappi...
  • 1 篇 deep space
  • 1 篇 gabor filters
  • 1 篇 modis
  • 1 篇 generative adver...
  • 1 篇 remote monitorin...
  • 1 篇 signal processin...
  • 1 篇 wavelet
  • 1 篇 wireless communi...
  • 1 篇 spatial resoluti...
  • 1 篇 geoscience
  • 1 篇 geographic infor...
  • 1 篇 roi
  • 1 篇 semantics
  • 1 篇 biophysics
  • 1 篇 image processing
  • 1 篇 feature extracti...
  • 1 篇 compression
  • 1 篇 filter banks

机构

  • 1 篇 university of sc...
  • 1 篇 labged laborator...
  • 1 篇 visual artificia...
  • 1 篇 southern medical...
  • 1 篇 universitat autò...
  • 1 篇 cibm center for ...
  • 1 篇 future processin...
  • 1 篇 center for mr-re...
  • 1 篇 faculty of engin...
  • 1 篇 university of ab...
  • 1 篇 xlab d.o.o. ljub...
  • 1 篇 university of ch...
  • 1 篇 department of nu...
  • 1 篇 embrapa brazilia...
  • 1 篇 radiology depart...
  • 1 篇 department of co...
  • 1 篇 ubtech sydney ai...
  • 1 篇 universidad pomp...
  • 1 篇 department of ra...
  • 1 篇 department of ne...

作者

  • 1 篇 fu huan
  • 1 篇 french andrew p.
  • 1 篇 feng liu
  • 1 篇 d. aydogan
  • 1 篇 prastawa marcel
  • 1 篇 c. fuller
  • 1 篇 z. zhao
  • 1 篇 cérigues albert
  • 1 篇 bernal jose
  • 1 篇 kotrotsou aikate...
  • 1 篇 d. zimmerer
  • 1 篇 r. dorent
  • 1 篇 barth bill
  • 1 篇 a. galdran
  • 1 篇 n. padoy
  • 1 篇 wiest roland
  • 1 篇 ferrante enzo
  • 1 篇 kirschke jan
  • 1 篇 m.e. ferreira
  • 1 篇 m. luu

语言

  • 7 篇 英文
检索条件"机构=Image Processing and Data Analysis Lab"
7 条 记 录,以下是1-10 订阅
排序:
Attributes and Semantic Constrained GAN for Face Sketch-Photo Synthesis
Attributes and Semantic Constrained GAN for Face Sketch-Phot...
收藏 引用
International Conference on Wireless Communications and Signal processing (WCSP)
作者: Jieying Zheng Haoxian Li Feng Liu Jiangsu Key Lab on Image Processing & Image Communications Nanjing University of Posts and Telecommunications Nanjing China School of Geographic and Biologic Information Nanjing University of Posts and Telecommunications Smart Health Big Data Analysis and Location Nanjing University of Posts and Telecommunications
Face sketch-photo synthesis aims at generating a facial photo conditioned on a given photo. It has attracted wide attention in computer vision and has been widely applied in law enforcement and entertainment. However,... 详细信息
来源: 评论
Spatial-Spectral Feature Extraction of Hyperspectral images using Attribute Profile With Partial Reconstruction and 3-D Gabor Filter Bank
Spatial-Spectral Feature Extraction of Hyperspectral Images ...
收藏 引用
International Conference of Signal processing and Intelligent Systems (ICSPIS)
作者: Mohammad Dowlatshah Hassan Ghassemian Maryam Imani Image Processing and Data Analysis Lab Tarbiat Modares University Tehran Iran
Simultaneously spatial-spectral feature extraction is preferred for classification of remotely sensed images. In this paper, attribute filters with partial reconstruction are applied for extraction of spatial characte... 详细信息
来源: 评论
Why is the Winner the Best?
Why is the Winner the Best?
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: M. Eisenmann A. Reinke V. Weru M. D. Tizabi F. Isensee T. J. Adler S. Ali V. Andrearczyk M. Aubreville U. Baid S. Bakas N. Balu S. Bano J. Bernal S. Bodenstedt A. Casella V. Cheplygina M. Daum M. De Bruijne A. Depeursinge R. Dorent J. Egger D. G. Ellis S. Engelhardt M. Ganz N. Ghatwary G. Girard P. Godau A. Gupta L. Hansen K. Harada M. Heinrich N. Heller A. Hering A. Huaulmé P. Jannin A. E. Kavur O. Kodym M. Kozubek J. Li H. Li J. Ma C. Martín-Isla B. Menze A. Noble V. Oreiller N. Padoy S. Pati K. Payette T. Rädsch J. Rafael-Patiño V. Singh Bawa S. Speidel C. H. Sudre K. Van Wijnen M. Wagner D. Wei A. Yamlahi M. H. Yap C. Yuan M. Zenk A. Zia D. Zimmerer D. Aydogan B. Bhattarai L. Bloch R. Brüngel J. Cho C. Choi Q. Dou I. Ezhov C. M. Friedrich C. Fuller R. R. Gaire A. Galdran Á. García Faura M. Grammatikopoulou S. Hong M. Jahanifar I. Jang A. Kadkhodamohammadi I. Kang F. Kofler S. Kondo H. Kuijf M. Li M. Luu T. Martinčič P. Morais M. A. Naser B. Oliveira D. Owen S. Pang J. Park S. Park S. Płotka E. Puybareau N. Rajpoot K. Ryu N. Saeed A. Shephard P. Shi D. Štepec R. Subedi G. Tochon H. R. Torres H. Urien J. L. Vilaça K. A. Wahid H. Wang J. Wang L. Wang X. Wang B. Wiestler M. Wodzinski F. Xia J. Xie Z. Xiong S. Yang Y. Yang Z. Zhao K. Maier-Hein P. F. Jäger A. Kopp-Schneider L. Maier-Hein Division of Intelligent Medical Systems German Cancer Research Center (DKFZ) Heidelberg Germany Helmholtz Imaging German Cancer Research Center (DKFZ) Heidelberg Germany Faculty of Mathematics and Computer Science Heidelberg University Heidelberg Germany Division of Biostatistics German Cancer Research Center (DKFZ) Heidelberg Germany Division of Medical Image Computing German Cancer Research Center (DKFZ) Heidelberg Germany Faculty of Engineering and Physical Sciences School of Computing University of Leeds Leeds UK Institute of Informatics School of Management HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland Sierre Switzerland Department of Nuclear Medicine and Molecular Imaging Lausanne University Hospital Lausanne Switzerland Technische Hochschule Ingolstadt Ingolstadt Germany Center for Artificial Intelligence and Data Science for Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA) University of Pennsylvania Philadelphia PA USA Department of Pathology and Laboratory Medicine Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Department of Radiology Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Department of Radiology University of Washington Seattle WA USA Department of Computer Science Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS) University College London London UK Universitat Autònoma de Barcelona & Computer Vision Center Barcelona Spain Division of Translational Surgical Oncology National Center for Tumor Diseases (NCT/UCC) Dresden Dresden Germany Department of Advanced Robotics Istituto Italiano di Tecnologia Italy Department of Electronics Information and Bioengineering Politecnico di Milano Milan Italy IT University of Copenhagen Copenhagen Denmark Department of General Visceral and Transplantation Surgery Heidelberg University Hospital Heidelberg Germany Department of Radiology and Nuc
International benchmarking competitions have become fundamental for the comparative performance assessment of image analysis methods. However, little attention has been given to investigating what can be learnt from t...
来源: 评论
Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge
arXiv
收藏 引用
arXiv 2018年
作者: Bakas, Spyridon Reyes, Mauricio Jakab, Andras Bauer, Stefan Rempfler, Markus Crimi, Alessandro Shinohara, Russell Takeshi Berger, Christoph Ha, Sung Min Rozycki, Martin Prastawa, Marcel Alberts, Esther Lipkova, Jana Freymann, John Kirby, Justin Bilello, Michel Fathallah-Shaykh, Hassan M. Wiest, Roland Kirschke, Jan Wiestler, Benedikt Colen, Rivka Kotrotsou, Aikaterini Lamontagne, Pamela Marcus, Daniel Milchenko, Mikhail Nazeri, Arash Weber, Marc-Andr Mahajan, Abhishek Baid, Ujjwal Gerstner, Elizabeth Kwon, Dongjin Acharya, Gagan Agarwal, Manu Alam, Mahbubul Albiol, Alberto Albiol, Antonio Albiol, Francisco J. Alex, Varghese Allinson, Nigel Amorim, Pedro H.A. Amrutkar, Abhijit Anand, Ganesh Andermatt, Simon Arbel, Tal Arbelaez, Pablo Avery, Aaron Azmat, Muneeza Pranjal, B. Bai, Wenjia Banerjee, Subhashis Barth, Bill Batchelder, Thomas Batmanghelich, Kayhan Battistella, Enzo Beers, Andrew Belyaev, Mikhail Bendszus, Martin Benson, Eze Bernal, Jose Bharath, Halandur Nagaraja Biros, George Bisdas, Sotirios Brown, James Cabezas, Mariano Cao, Shilei Cardoso, Jorge M. Carver, Eric N. Casamitjana, Adri Castillo, Laura Silvana Cat, Marcel Cattin, Philippe Cérigues, Albert Chagas, Vinicius S. Chandra, Siddhartha Chang, Yi-Ju Chang, Shiyu Chang, Ken Chazalon, Joseph Chen, Shengcong Chen, Wei Chen, Jefferson W. Chen, Zhaolin Cheng, Kun Choudhury, Ahana Roy Chylla, Roger Clrigues, Albert Colleman, Steven Colmeiro, Ramiro German Rodriguez Combalia, Marc Costa, Anthony Cui, Xiaomeng Dai, Zhenzhen Dai, Lutao Daza, Laura Alexandra Deutsch, Eric Ding, Changxing Dong, Chao Dong, Shidu Dudzik, Wojciech Eaton-Rosen, Zach Egan, Gary Escudero, Guilherme Estienne, Tho Everson, Richard Fabrizio, Jonathan Fan, Yong Fang, Longwei Feng, Xue Ferrante, Enzo Fidon, Lucas Fischer, Martin French, Andrew P. Fridman, Naomi Fu, Huan Fuentes, David Gao, Yaozong Gates, Evan Gering, David Gholami, Amir Gierke, Willi Glocker, Ben Gong, Mingming Gonzlez-Vill, Sandra Grosges, T. Guan, Yuanfang Guo, Sheng Gupta, Sudeep Han, Woo-Sup Han, Il Song Harmuth, Ko Center for Biomedical Image Computing and Analytics University of Pennsylvania PhiladelphiaPA United States Department of Radiology Perelman School of Medicine University of Pennsylvania PhiladelphiaPA United States Department of Pathology and Laboratory Medicine Perelman School of Medicine University of Pennsylvania PhiladelphiaPA United States Institute for Surgical Technology and Biomechanics University of Bern Bern Switzerland Center for MR-Research University Children's Hospital Zurich Zurich Switzerland Support Centre for Advanced Neuroimaging Inselspital Institute for Diagnostic and Interventional Neuroradiology Bern University Hospital Bern Switzerland University Hospital of Zurich Zurich Switzerland Center for Clinical Epidemiology and Biostatistics University of Pennsylvania Philadelphia United States Image-Based Biomedical Modeling Group Technical University of Munich Munich Germany Icahn School of Medicine Mount Sinai Health System New YorkNY United States Leidos Biomedical Research Inc. Frederick National Laboratory for Cancer Research FrederickMD21701 United States Cancer Imaging Program National Cancer Institute National Institutes of Health BethesdaMD20814 United States Department of Neurology University of Alabama at Birmingham BirminghamAL United States Department of Diagnostic Radiology University of Texas MD Anderson Cancer Center HoustonTX United States Department of Psychology Washington University St. LouisMO United States Neuroimaging Informatics and Analysis Center Washington University St. LouisMO United States Department of Radiology Washington University St. LouisMO United States Institute of Diagnostic and Interventional Radiology Pediatric Radiology and Neuroradiology University Medical Center Rostock Ernst-Heydemann-Str. 6 Rostock18057 Germany Tata Memorial Centre Homi Bhabha National Institute Mumbai India Shri Guru Gobind Singhji Institute of Engineering and Technology Nanded India NVIDIA Santa Clara
Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrot... 详细信息
来源: 评论
Evaluation of MODIS vegetation indices and change thresholds for the monitoring of the Brazilian Cerrado
Evaluation of MODIS vegetation indices and change thresholds...
收藏 引用
IEEE International Symposium on Geoscience and Remote Sensing (IGARSS)
作者: L.G. Ferreira M.E. Ferreira N.C. Ferreira E.T. de Jesus E.E. Sano A.R. Huete Image Processing and GIS lab Federal University of Goiás (IESA — UFG) Goiânia Brazil Brazilian Agricultural Research Organization Planaltina Brazil Geoscience Institute University of Brasília-UnB Brasilia Brazil Graduate Program on Environmental Data Analysis Geoscience Institute Brasília Brazil Terrestrial Biophysics and Remote Sensing Laboratory (TBRS) SWES Department University of Arizona Tucson Tucson USA Embrapa Brazilian Agricultural Research Organization Brazil SWES Department University of Arizona Tucson USA
We investigated the use of the MODIS vegetation indices and the effect of distinct change thresholds for monitoring land cover change in the Cerrado biome, the largest region of neotropical savanna vegetation in the w... 详细信息
来源: 评论
Remote sensing image compression for deep space based on region of interest
收藏 引用
Journal of Harbin Institute of Technology(New Series) 2003年 第3期10卷 300-303页
作者: 王振华 吴伟仁 田玉龙 田金文 柳健 Institute for Pattern Recognition and Artificial Intelligence State Key Lab for Image Processing and Intelligent ControlHuazhong University of Science and Technology Wuhan 430074 China Institute for Pattern Recognition and Artificial Intelligence State Key Lab for Image Processing and Intelligent ControlHuazhong University of Science and Technology Wuhan 430074 China major limitation for deep space communication is the limited bandwidths available. The downlink rate using X-band with an L2 halo orbit is estimated to be of only 5.35 GB/d. However the Next Generation Space Telescope (NGST) will produce about 600 GB/d. Clearly the volume of data to downlink must be reduced by at least a factor of 100. One of the resolutions is to encode the data using very low bit rate image compression techniques. An very low bit rate image compression method based on region of interest(ROI) has been proposed for deep space image. The conventional image compression algorithms which encode the original data without any data analysis can maintain very good details and haven't high compression rate while the modern image compressions with semantic organization can have high compression rate even to be hundred and can't maintain too much details. The algorithms based on region of interest inheriting from the two previews algorithms have good semantic features and high fidelity and is therefore suitable for applications at a low bit rate. The proposed method extracts the region of interest by texture analysis after wavelet transform and gains optimal local quality with bit rate control. The Result shows that our method can maintain more details in ROI than general image compression algorithm(SPIHT) under the condition of sacrificing the quality of other uninterested areas
A major limitation for deep space communication is the limited bandwidths available. The downlinkrate using X-band with an L2 halo orbit is estimated to be of only 5.35 GB/d. However, the Next GenerationSpace Telescop... 详细信息
来源: 评论
Interactive tools for signal processing education. The signal processing instructional facility (SPIF lab) at Washington State University
收藏 引用
Computer Applications in Engineering Education 1993年 第6期1卷 517-517页
作者: Bamberger, R.H. Signal Processing Instructional Facility School of Electrical Engineering and Computer Science Washington State University Pullman WA 99164-2752 Dr. Roberto H. Bamberger:was born on January 30 1965 in Buenos Aires Argentina. He received his B.E.E and PhD from the Georgia Institute of Technology in 1986 and 1990 respectively. Currently Dr. Bamberger is an assistant professor in the School of Electrical Engineering and Computer Science at Washington State University. Dr. Bamberger's research program is focused on the design implementation and application of multidimensional multirate filter banks subband image and video compression analysis of nonstationary data and application of digital signal processing techniques in the design of analog and mixed-mode integrated circuits. Dr. Bamberger is the founder and director of the Signal Processing Instructional Facility (SPIF Lab) at Washington State University. The SPIF Lab features interactive multimedia-based tools for teaching concepts related to linear systems theory. Dr. Bamberger is active in developing multimedia-based instructional laboratories for a variety of other topics as well. In addition to his teaching and research programs Dr. Bamberger is an associate editor for theIEEE Transactions on Signal Processingand a member of the editorial board forComputer Applications in Engineering Education. Dr. Bamberger is also advisor to the WSU Student Branch of the IEEE and assistant director of the WSU Cougar Marching Band. Dr. Bamberger is a member of Phi Eta Sigma Eta Kappa Nu Tau Beta Pi and Kappa Kappa Psi.
The Signal processing Instructional Facility (SPIF lab) is an experiment in using in interactive multimedia for teaching concepts related to linear systems theory and signal processing. The goals of the SPIF lab are t...
来源: 评论