Multiobjective evolutionary clustering approach has been successfully utilized in data clustering. In this paper, we propose a novel unsupervised machine learning algorithm namely multiobjective evolutionary clusterin...
详细信息
Multiobjective evolutionary clustering approach has been successfully utilized in data clustering. In this paper, we propose a novel unsupervised machine learning algorithm namely multiobjective evolutionary clustering ensemble algorithm (MECEA) to perform the texture image segmentation. MECEA comprises two main phases. In the first phase, MECEA uses a multiobjective evolutionary clustering algorithm to optimize two complementary clustering objectives: one based on compactness in the same cluster, and the other based on connectedness of different clusters. The output of the first phase is a set of Pareto solutions, which correspond to different tradeoffs between two clustering objectives, and different numbers of clusters. In the second phase, we make use of the meta-clustering algorithm (MCLA) to combine all the Pareto solutions to get the final segmentation. The segmentation results are evaluated by comparing with three known algorithms: K-means, fuzzy K-means (FCM), and evolutionary clustering algorithm (ECA). It is shown that MECEA is an adaptive clustering algorithm, which outperforms the three algorithms in the experiments we carried out.
In this paper, a variant of support vector novelty detection (SVND) with dot product kernels is presented for non-spherical distributed data. Firstly we map the data in input space into a reproducing kernel Hilbert sp...
详细信息
In this paper, a variant of support vector novelty detection (SVND) with dot product kernels is presented for non-spherical distributed data. Firstly we map the data in input space into a reproducing kernel Hilbert space (RKHS) by using kernel trick. Secondly we perform whitening process on the mapped data using kernel principal component analysis (KPCA). Finally, we adopt SVND method to train and test whitened data. Experiments were performed on artificial and real-world data.
As an emerging and promising molecular imaging modality, bioluminescence tomography (BLT) can reconstruct the internal light source with the photon fluence on the small animal surface to reveal non-invasive molecular ...
As an emerging and promising molecular imaging modality, bioluminescence tomography (BLT) can reconstruct the internal light source with the photon fluence on the small animal surface to reveal non-invasive molecular and cellular activities directly. In order to obtain higher precision and better spatial resolution in source reconstruction, the solution accuracy for the forward problem of BLT should be improved as high as possible. In this contribution, we present a modified element free Galerkin method (MEFGM) to calculate photon propagation in the biological tissue. This method is based on moving least squares (MLS) approximation which requires only a series of nodes in the region of interest, so complicated meshing task can be avoided compared with finite element method (FEM). Furthermore, MLS shape functions are further modified to satisfy the delta function property, which can simplify the processing of boundary conditions in comparison with traditional meshless methods. Finally, the numerical simulation experiments demonstrate the effectiveness and feasibility of this proposed method by comparing the solution of MEFGM with that of FEM.
We consider the problem of looking for small universal spiking neural P systems with exhaustive use of rules, which was formulated as an open problem by Gheorghe Paun in a survey paper. Here, spiking neural P systems ...
详细信息
We consider the problem of looking for small universal spiking neural P systems with exhaustive use of rules, which was formulated as an open problem by Gheorghe Paun in a survey paper. Here, spiking neural P systems are used in two versions: as devices computing functions and as devices generating sets of numbers, with two ways of encoding the result of a computation. As devices of computing functions, if we associate the result with the distance between the first two spikes emitted by the output neuron, we produce a universal computing spiking neural P system with exhaustive use of rules (without delay) having 125 neurons; if we introduce the usual way of defining the result of a computation in membrane systems to encode the result, namely, the number of spikes emitted during a computation, then a universal computing system (without delay) with 126 neurons is also obtained in the sense of the exhaustive use of rules. For spiking neural P systems used as generators of sets of numbers, we construct a universal system (without delay) by using 128 neurons under the first way of defining the computation result, and a system (without delay) by using 127 neurons under the second way of defining the computation result.
In this paper, based on Baldwin effect, an improved clonal selection algorithm, Baldwin clonal selection algorithm, termed as BCSA, is proposed to deal with complex multimodal optimization problems. BCSA evolves and i...
详细信息
In this paper, based on Baldwin effect, an improved clonal selection algorithm, Baldwin clonal selection algorithm, termed as BCSA, is proposed to deal with complex multimodal optimization problems. BCSA evolves and improves antibody population by three operations: clonal proliferation operation, Baldwinian learning operation and clonal selection operation. By introducing Baldwin effect, BCSA can make the most of experience of antibodies, accelerate the convergence, and obtain the global optimization quickly. In experiments, BCSA is tested on four types of functions and compared with the clonal selection algorithm and other optimization methods. Experimental results indicate that BCSA achieves a good performance, and is also an effective and robust technique for optimization.
A quick 3D needle segmentation algorithm for 3D US data is described in this paper. The algorithm includes the 3D Quick Randomized Hough Transform (3DGHT), which is based on the 3D Randomized Hough Transform and coars...
详细信息
Support vector machine, a universal method for learning from data, gains its development based on statistical learning theory. It shows many advantages in solving nonlinearly small sample and high dimensional problems...
详细信息
Support vector machine, a universal method for learning from data, gains its development based on statistical learning theory. It shows many advantages in solving nonlinearly small sample and high dimensional problems of pattern recognition. Only a part of samples or support vectors (SVs) plays an important role in the final decision function. But SVs could not be obtained in advance until a quadratic programming is performed. In this paper, we use K-nearest neighbour method to extract a boundary vector set which may contain SVs. The number of the boundary set is smaller than the whole training set. Consequently it reduces the training samples, speeds up the training of support vector machine.
A method for multi-classifier ensemble of Support Vector Machine ensemble (SVMs) and Kernel Matching Pursuit Ensemble (KMPs) is proposed. Support Vector Machine has advantage in solving classification problem of high ...
详细信息
A method for multi-classifier ensemble of Support Vector Machine ensemble (SVMs) and Kernel Matching Pursuit Ensemble (KMPs) is proposed. Support Vector Machine has advantage in solving classification problem of high dimension and small size dataset, and Kernel Matching Pursuit has almost classified performance and the more sparsely solution as comprised with the SVM. So the SVM and the KMP are mix boosted in this paper, which can decrease generalization errors of the single classifier ensemble and improve ensemble classification accuracy by increasing diversity between ensemble individuals. The experiments show that the proposed method can shorten running time and improve classification accuracy compared with individual SVMs or KMPs.
A progressive image compression scheme is investigated using reversible integer discrete cosine transform (RDCT) which is derived from the matrix factorization theory. Previous techniques based on DCT suffer from bad ...
详细信息
A progressive image compression scheme is investigated using reversible integer discrete cosine transform (RDCT) which is derived from the matrix factorization theory. Previous techniques based on DCT suffer from bad performance in lossy image compression compared with wavelet image codec. And lossless compression methods such as IntDCT, I2I-DCT and so on could not compare with JPEG-LS or integer discrete wavelet transform (DWT) based codec. In this paper, lossy to lossless image compression can be implemented by our proposed scheme which consists of RDCT, coefficients reorganization, bit plane encoding, and reversible integer pre- and post-filters. Simulation results show that our method is competitive against JPEG-LS and JPEG2000 in lossless compression. Moreover, our method outperforms JPEG2000 (reversible 5/3 filter) for lossy compression, and the performance is even comparable with JPEG2000 which adopted irreversible 9/7 floating-point filter (9/7F filter).
Several neutrosophic combination rules based on the Dempster-Shafer theory (DST) and Dezert-Smarandache theory (DSmT) are presented in this study. The new information fusing approaches proposed the neutrosophic belief...
详细信息
暂无评论