咨询与建议

限定检索结果

文献类型

  • 2,035 篇 会议
  • 1,151 篇 期刊文献

馆藏范围

  • 3,186 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,060 篇 工学
    • 1,124 篇 计算机科学与技术...
    • 983 篇 软件工程
    • 502 篇 控制科学与工程
    • 382 篇 信息与通信工程
    • 279 篇 电气工程
    • 278 篇 生物工程
    • 254 篇 机械工程
    • 239 篇 生物医学工程(可授...
    • 236 篇 电子科学与技术(可...
    • 213 篇 光学工程
    • 129 篇 化学工程与技术
    • 114 篇 仪器科学与技术
    • 85 篇 交通运输工程
    • 82 篇 材料科学与工程(可...
    • 72 篇 动力工程及工程热...
    • 56 篇 力学(可授工学、理...
    • 50 篇 航空宇航科学与技...
    • 47 篇 安全科学与工程
  • 1,231 篇 理学
    • 672 篇 数学
    • 334 篇 物理学
    • 312 篇 生物学
    • 189 篇 系统科学
    • 183 篇 统计学(可授理学、...
    • 123 篇 化学
  • 446 篇 管理学
    • 285 篇 管理科学与工程(可...
    • 166 篇 图书情报与档案管...
    • 79 篇 工商管理
  • 164 篇 医学
    • 136 篇 临床医学
    • 112 篇 基础医学(可授医学...
    • 87 篇 药学(可授医学、理...
  • 51 篇 法学
  • 39 篇 农学
  • 28 篇 经济学
  • 27 篇 教育学
  • 12 篇 军事学
  • 9 篇 文学
  • 8 篇 艺术学
  • 2 篇 哲学

主题

  • 127 篇 feature extracti...
  • 81 篇 training
  • 69 篇 image segmentati...
  • 65 篇 semantics
  • 56 篇 computational mo...
  • 50 篇 accuracy
  • 47 篇 object detection
  • 45 篇 deep learning
  • 44 篇 optimization
  • 43 篇 convolution
  • 42 篇 robustness
  • 40 篇 machine learning
  • 37 篇 support vector m...
  • 37 篇 predictive model...
  • 36 篇 neural networks
  • 36 篇 mathematical mod...
  • 35 篇 image processing
  • 35 篇 clustering algor...
  • 34 篇 stability analys...
  • 31 篇 control systems

机构

  • 121 篇 fujian provincia...
  • 111 篇 department of au...
  • 111 篇 shanghai enginee...
  • 109 篇 key laboratory o...
  • 89 篇 school of artifi...
  • 69 篇 key laboratory o...
  • 60 篇 school of automa...
  • 55 篇 guangxi key labo...
  • 52 篇 fujian provincia...
  • 52 篇 shaanxi key labo...
  • 51 篇 key laboratory o...
  • 48 篇 key laboratory o...
  • 40 篇 key laboratory o...
  • 40 篇 key laboratory o...
  • 37 篇 shaanxi key labo...
  • 35 篇 shenzhen huazhon...
  • 35 篇 key laboratory o...
  • 31 篇 key laboratory o...
  • 30 篇 key laboratory o...
  • 29 篇 key laboratory o...

作者

  • 72 篇 li zuoyong
  • 66 篇 wu dongrui
  • 63 篇 sang nong
  • 59 篇 zhang fuquan
  • 52 篇 gao changxin
  • 49 篇 zeng zhigang
  • 49 篇 zhigang zeng
  • 48 篇 jiao licheng
  • 45 篇 jian huang
  • 43 篇 yongji wang
  • 38 篇 huang jian
  • 37 篇 ding mingyue
  • 37 篇 pan linqiang
  • 35 篇 zuoyong li
  • 33 篇 cao zhiguo
  • 33 篇 mingyue ding
  • 33 篇 wang yongji
  • 32 篇 licheng jiao
  • 30 篇 hai-tao zhang
  • 30 篇 wang hesheng

语言

  • 3,041 篇 英文
  • 82 篇 其他
  • 64 篇 中文
检索条件"机构=Image Processing and Intelligent Control Key Laboratory"
3186 条 记 录,以下是291-300 订阅
排序:
HyRSM++: Hybrid relation guided temporal set matching for few-shot action recognition
收藏 引用
Pattern Recognition 2024年 147卷
作者: Wang, Xiang Zhang, Shiwei Qing, Zhiwu Zuo, Zhengrong Gao, Changxin Jin, Rong Sang, Nong Key Laboratory of Ministry of Education for Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology China Alibaba Group China Meta AI United States
Few-shot action recognition is a challenging but practical problem aiming to learn a model that can be easily adapted to identify new action categories with only a few labeled samples. However, existing attempts still... 详细信息
来源: 评论
A Recipe for Scaling up Text-to-Video Generation with Text-free Videos
A Recipe for Scaling up Text-to-Video Generation with Text-f...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Xiang Wang Shiwei Zhang Hangjie Yuan Zhiwu Qing Biao Gong Yingya Zhang Yujun Shen Changxin Gao Nong Sang Key Laboratory of Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology Alibaba Group Zhejiang University Ant Group
Diffusion-based text-to-video generation has witnessed impressive progress in the past year yet still falls behind text-to-image generation. One of the key reasons is the limited scale of publicly available data (e.g.... 详细信息
来源: 评论
Selection of Optimal Focusing Evaluation Function Based on Sparse Microscopic images
Selection of Optimal Focusing Evaluation Function Based on S...
收藏 引用
2022 International Conference on Electrical, Electronics and Information Engineering, EEIE 2022
作者: Lv, Meini Gan, Hui Liu, Xin Chen, Jia Yang, Qiuhui Wuzhou University Wuzhou China Guangxi Colleges and Universities Key Laboratory of Image Processing and Intelligent Information System Wuzhou University Wuzhou China
The auto focusing process is affected by the amount of image content, resulting in the focus curve not meeting the characteristics of the ideal focus curve. In this paper, aiming at the problem that the traditional au... 详细信息
来源: 评论
Ensemble prediction modeling of flotation recovery based on machine learning
收藏 引用
International Journal of Mining Science and Technology 2024年 第12期34卷 1727-1740页
作者: Guichun He Mengfei Liu Hongyu Zhao Kaiqi Huang Jiangxi Provincial Key Laboratory of Low-Carbon Processing and Utilization of Strategic Metal Mineral Resources Ganzhou 341000China School of Resources and Environmental Engineering Jiangxi University of Science and TechnologyGanzhou 341000China Hefei GoldStart Intelligent Control Technical Co. Ltd.Hefei 230088China School of Mechanical and Electrical Engineering Jiangxi University of Science and TechnologyGanzhou 341000China
With the rise of artificial intelligence(AI)in mineral processing,predicting the flotation indexes has attracted significant research ***,current prediction models suffer from low accuracy and high prediction ***,this... 详细信息
来源: 评论
Multi-Branch Spatial-Temporal Attention Graph Convolution Network for Skeleton-based Action Recognition  41
Multi-Branch Spatial-Temporal Attention Graph Convolution Ne...
收藏 引用
第41届中国控制会议
作者: Daoshuai Wang Dewei Li Yaonan Guan Gang Wang Haibin Shao Department of Automation Shanghai Jiao Tong University Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai Engineering Research Center of Intelligent Control and Management
Skeleton-based human action reco gnition has attracted considerable research interest due to its robustness to dynamic environments and complex *** based on graph neural networks have achieved great success in this **... 详细信息
来源: 评论
A Low-complexity Decision Variables Classification Brainstorm Optimization Algorithm
A Low-complexity Decision Variables Classification Brainstor...
收藏 引用
2024 International Conference on Applied Mathematics, Modelling and Statistics Application, AMMSA 2024
作者: Li, Qiyue Qiu, Lipeng Zhou, Aoran Wu, Yali Wang, Ziren Department of Information and Control Engineering Xi'An University of Technolog Xi'an710048 China Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing Xi'an710048 China State Key Laboratory of Metal Extrusion and Forging Equipment Technology China National Heavy Machinery Research Institute Co. Ltd. Xi'an710016 China
In the complex optimization scenarios of real life, we often need to not only weigh the conflicts between multi-objectives but also face the challenges brought by large-scale decision variables. When the scale of deci... 详细信息
来源: 评论
Learning Knowledge Evolution with Time Duration from Finer-Time-Granularity Temporal Knowledge Graph
Learning Knowledge Evolution with Time Duration from Finer-T...
收藏 引用
2023 China Automation Congress, CAC 2023
作者: Du, Shaochong Chen, Kang Yang, Shijie Huo, Hong Fang, Tao Shanghai Jiao Tong University Department of Automation Shanghai China Ministry of Education Key Laboratory of System Control and Information Processing Shanghai China Shanghai Engineering Research Centre of Intelligent Control and Management Shanghai China
How to represent the temporal information corresponding to each fact in temporal knowledge graphs (TKGs) effectively is always challenging. Most existing representation learning methods usually map the timelines of kn... 详细信息
来源: 评论
An Integrated Scheduling Algorithm of Satellite Observation and Data Download Based on Multi-Agent Deep Reinforcement Learning
An Integrated Scheduling Algorithm of Satellite Observation ...
收藏 引用
2023 China Automation Congress, CAC 2023
作者: Chen, Kang Du, Shaochong Huo, Hong Fang, Tao Shanghai Jiao Tong University Department of Automation Shanghai China Key Laboratory of System Control and Information Processing Ministry of Education Shanghai China Shanghai Engineering Research Centre of Intelligent Control and Management Shanghai China
The earth observation satellite scheduling has always been critical for the maximum use of limited satellite resources, which basically includes scheduling ground target observation and observation data downloading. D... 详细信息
来源: 评论
Small Object Detection via a Dense Connection and Feature Enhancement Network  9
Small Object Detection via a Dense Connection and Feature En...
收藏 引用
9th International Conference on Computer and Communications, ICCC 2023
作者: Qiang, Baohua Chen, Lirui Guo, Shuiping Liu, Lingzhi Zhang, Shihao Guilin University of Electronic Technology Guangxi Key Laboratory of Image and Graphic Intelligent Processing Guilin541004 China The 7th Research Institute of China Electrics Technology Group Corporation Guangzhou China
When detecting small objects in complex environment, the features of small objects will become blurred or even lost as the number of network layers increases. To address this problem, we constructed a Dense Connection... 详细信息
来源: 评论
Reward Shaping-based Double Deep Q-networks for Unmanned Surface Vessel Navigation and Obstacle Avoidance  48
Reward Shaping-based Double Deep Q-networks for Unmanned Sur...
收藏 引用
48th Annual Conference of the IEEE Industrial Electronics Society, IECON 2022
作者: Gan, Zihan Zheng, Jinghong Jiang, Zhenyu Lu, Renzhi Huazhong University of Science and Technology Key Laboratory of Image Processing and Intelligent Control School of Artificial Intelligence and Automation Wuhan430074 China Wuhan University of Science and Technology Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering Wuhan430081 China
In this paper, a method for navigation and obstacle avoidance of unmanned surface vessel (USV) based on reinforcement learning and reward shaping is proposed. This approach uses double deep Q networks (DDQN) to make d... 详细信息
来源: 评论