咨询与建议

限定检索结果

文献类型

  • 1,164 篇 会议
  • 806 篇 期刊文献

馆藏范围

  • 1,970 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,238 篇 工学
    • 661 篇 计算机科学与技术...
    • 571 篇 软件工程
    • 370 篇 控制科学与工程
    • 181 篇 电气工程
    • 179 篇 信息与通信工程
    • 166 篇 机械工程
    • 165 篇 生物工程
    • 136 篇 生物医学工程(可授...
    • 128 篇 电子科学与技术(可...
    • 116 篇 光学工程
    • 71 篇 化学工程与技术
    • 63 篇 仪器科学与技术
    • 47 篇 交通运输工程
    • 43 篇 材料科学与工程(可...
    • 40 篇 力学(可授工学、理...
    • 39 篇 动力工程及工程热...
    • 34 篇 航空宇航科学与技...
    • 27 篇 土木工程
  • 770 篇 理学
    • 440 篇 数学
    • 187 篇 物理学
    • 185 篇 生物学
    • 140 篇 系统科学
    • 108 篇 统计学(可授理学、...
    • 64 篇 化学
  • 268 篇 管理学
    • 196 篇 管理科学与工程(可...
    • 79 篇 图书情报与档案管...
    • 58 篇 工商管理
  • 88 篇 医学
    • 72 篇 临床医学
    • 51 篇 基础医学(可授医学...
    • 41 篇 药学(可授医学、理...
  • 25 篇 法学
  • 23 篇 经济学
  • 15 篇 农学
  • 12 篇 教育学
  • 8 篇 军事学
  • 7 篇 文学
  • 2 篇 艺术学
  • 1 篇 哲学

主题

  • 55 篇 feature extracti...
  • 47 篇 training
  • 35 篇 computational mo...
  • 30 篇 image segmentati...
  • 29 篇 image processing
  • 28 篇 machine learning
  • 28 篇 multi-agent syst...
  • 26 篇 object detection
  • 26 篇 semantics
  • 24 篇 optimization
  • 23 篇 simulation
  • 23 篇 stability analys...
  • 23 篇 multi agent syst...
  • 23 篇 robustness
  • 22 篇 neurons
  • 22 篇 laboratories
  • 22 篇 accuracy
  • 21 篇 support vector m...
  • 21 篇 deep learning
  • 21 篇 mathematical mod...

机构

  • 111 篇 shanghai enginee...
  • 110 篇 department of au...
  • 109 篇 key laboratory o...
  • 86 篇 school of artifi...
  • 69 篇 key laboratory o...
  • 58 篇 school of automa...
  • 51 篇 key laboratory o...
  • 48 篇 key laboratory o...
  • 40 篇 key laboratory o...
  • 40 篇 key laboratory o...
  • 35 篇 shenzhen huazhon...
  • 35 篇 key laboratory o...
  • 30 篇 key laboratory o...
  • 27 篇 key laboratory o...
  • 26 篇 department of co...
  • 26 篇 alibaba group
  • 23 篇 key laboratory o...
  • 21 篇 department of au...
  • 20 篇 institute of ima...
  • 20 篇 ministry of educ...

作者

  • 66 篇 wu dongrui
  • 61 篇 sang nong
  • 52 篇 gao changxin
  • 49 篇 zeng zhigang
  • 49 篇 zhigang zeng
  • 42 篇 jian huang
  • 37 篇 pan linqiang
  • 36 篇 ding mingyue
  • 36 篇 huang jian
  • 34 篇 yongji wang
  • 33 篇 jiao licheng
  • 33 篇 cao zhiguo
  • 33 篇 mingyue ding
  • 31 篇 licheng jiao
  • 30 篇 hai-tao zhang
  • 30 篇 wang hesheng
  • 30 篇 wang yongji
  • 29 篇 guan xinping
  • 28 篇 chen cailian
  • 27 篇 housheng su

语言

  • 1,871 篇 英文
  • 50 篇 其他
  • 50 篇 中文
检索条件"机构=Image Processing and Intelligent Control Key Laboratory of Education"
1970 条 记 录,以下是601-610 订阅
排序:
A Born-Again Takagi-Sugeno-Kang Fuzzy Classifier with Decoupled Fuzzy Dark Knowledge Distillation
SSRN
收藏 引用
SSRN 2024年
作者: Zhang, Xiongtao Yin, Zezong Jiang, Yunliang Jiang, Yizhang Sun, Danfeng Liu, Yong School of Information Engineering Huzhou University Huzhou31300 China Zhejiang Key Laboratory of Intelligent Education Technology and Application Zhejiang Normal University Jinhua321004 China School of Computer Science and Technology Zhejiang Normal University Jinhua321004 China School of Artificial Intelligence and Computer Science Jiangnan University Wuxi 214122 China Key Laboratory of Image Processing and Intelligent Control Huazhong University of Science and Technology Ministry of Education Wuhan430074 China School of Computer Science Hangzhou Dianzi University Hangzhou310018 China College of Control Science and Engineering Zhejiang University Hangzhou310027 China
In order to enpower the hight performance as well as interpretability of low-order TSK fuzzy classifier, a born-again TSK fuzzy classier embedded with decoupled fuzzy dark knowledge distillation called HTSK-LLM-DKD is... 详细信息
来源: 评论
Nonlinear Active Disturbance Rejection control for Vehicle Active Suspension System
Nonlinear Active Disturbance Rejection Control for Vehicle A...
收藏 引用
Electronic Information Engineering and Computer Science (EIECS), 2021 International Conference on
作者: Xianglian Dai Chunzhe Zhao Rong Xu School of Electronics and Information Engineering Chongqing Three Gorges University Wanzhou China Chongqing Engineering Research Center of Internet of Things and Intelligent Control Technology Key Laboratory of Intelligent Information Processing and Control of Chongqing Municipal Institutions of Higher Education Chongqing Three Gorges University Wanzhou China
Nonlinear active disturbance rejection control (ADRC) is designed for the suspension system of the quarter vehicle model with the two-degree freedom. It is compared with other active suspension systems based on PID an...
来源: 评论
Generating Natural Language adversarial examples through an improved beam search algorithm
arXiv
收藏 引用
arXiv 2021年
作者: Zhao, Tengfei Ge, Zhaocheng Hu, Hanping Shi, Dingmeng School of Artificial Intelligence and Automation Huazhong University of Science and Technology Key Laboratory of Image Information Processing and Intelligent Control Ministry of Education
The research of adversarial attacks in the text domain attracts many interests in the last few years, and many methods with a high attack success rate have been proposed. However, these attack methods are inefficient ... 详细信息
来源: 评论
Predictor-Based Active Anti-Disturbance control for Multi-Rate control Systems with Delayed Sampled-Data
Predictor-Based Active Anti-Disturbance Control for Multi-Ra...
收藏 引用
第40届中国控制会议
作者: Jiankun Sun Zhigang Zeng the School of Artificial Intelligence and Automation Huazhong University of Science and Technology the Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China
In this paper, we consider the problem of sampleddata active anti-disturbance control design for multi-rate control system subject to delayed sampled-data output. The plant considered in this paper is equipped with a ... 详细信息
来源: 评论
Autonomous Exploration and Mapping for Mobile Robots via Cumulative Curriculum Reinforcement Learning
arXiv
收藏 引用
arXiv 2023年
作者: Li, Zhi Xin, Jinghao Li, Ning Department of Automation Shanghai Jiao Tong University Shanghai200240 China Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai200240 China Shanghai Engineering Research Center of Intelligent Control and Management Shanghai200240 China
Deep reinforcement learning (DRL) has been widely applied in autonomous exploration and mapping tasks, but often struggles with the challenges of sampling efficiency, poor adaptability to unknown map sizes, and slow s... 详细信息
来源: 评论
control Strategy of Multi-axis Serial Manipulator Based on Improved Active Disturbance Rejection control
Control Strategy of Multi-axis Serial Manipulator Based on I...
收藏 引用
第34届中国控制与决策会议
作者: Pengcheng Hu Chaochen Gu Kaijie Wu Department of Automation Shanghai Jiao Tong University Key Laboratory of System Control and Information ProcessingMinistry of Education of China Shanghai Engineering Research Center of Intelligent Control and Management
Aiming at the sudden change of load torque and uncertain external disturbance that multi-axis serial manipulators may face during operation,an improved Active Disturbance Rejection controller(ADRC) assisted by a Nonli... 详细信息
来源: 评论
Nash Pursuit Strategy for Nonzero-Sum MPC Game via Inverse Optimal control  13
Nash Pursuit Strategy for Nonzero-Sum MPC Game via Inverse O...
收藏 引用
13th Asian control Conference, ASCC 2022
作者: Qiu, Tianyu Zhang, Han Wang, Jingchuan Department of Automation School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai China Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai200240 China Shanghai Engineering Research Center of Intelligent Control and Management Shanghai200240 China
In this paper, a traditional one v.s. one pursuit and evasion scenario is considered. The evader aims to reach her target and avoid being captured by the pursuer, while the pursuer, without the knowledge of the evader... 详细信息
来源: 评论
Memory Analysis for Memristors and Memristive Recurrent Neural Networks
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2020年 第1期7卷 96-105页
作者: Gang Bao Yide Zhang Zhigang Zeng Key Laboratory of Cascaded Hydropower Stations Operation and Control Electrical Engineering and New EnergyChina Three Gorges UniversityYichang 443002and Hubei Key Laboratory of Applied Mathematics(Hubei University)Wuhan 430074China Department of Medical Engineering California Institute of TechnologyPasadenaCalifornia 91125 USA School of Artificial Intelligence and Automation Huazhong University of Science and Technologyand also with the Key Laboratory of Image Processing and Intelligent Control of Education Ministry of ChinaWuhan 430074China
Traditional recurrent neural networks are composed of capacitors, inductors, resistors, and operational *** neural networks are constructed by replacing resistors with memristors. This paper focuses on the memory anal... 详细信息
来源: 评论
An intelligent Evaluation Method of Root Canal Therapy Quality Based on Deep Learning
An Intelligent Evaluation Method of Root Canal Therapy Quali...
收藏 引用
Chinese Automation Congress (CAC)
作者: Jie Liu Gang Peng Shiqian Yan School of Artificial Intelligence and Automation Huazhong University of Science and Technology Key Laboratory of Image Processing and Intelligent Control Ministry of Education Wuhan China Hubei Eya Medical Investment Management Co. Ltd Wuhan China
Dentists judge the quality of root canal therapy for each patient very time-consuming, and inefficient, lack of quantitative evaluation criteria, easy to cause judgment errors. At the same time, the traditional method... 详细信息
来源: 评论
Adversarial Refinement Network for Human Motion Prediction  15th
Adversarial Refinement Network for Human Motion Prediction
收藏 引用
15th Asian Conference on Computer Vision, ACCV 2020
作者: Chao, Xianjin Bin, Yanrui Chu, Wenqing Cao, Xuan Ge, Yanhao Wang, Chengjie Li, Jilin Huang, Feiyue Leung, Howard City University of Hong Kong Hong Kong China Key Laboratory of Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan China Tencent Youtu Lab Shanghai China
Human motion prediction aims to predict future 3D skeletal sequences by giving a limited human motion as inputs. Two popular methods, recurrent neural networks and feed-forward deep networks, are able to predict rough... 详细信息
来源: 评论