咨询与建议

限定检索结果

文献类型

  • 114 篇 会议
  • 32 篇 期刊文献

馆藏范围

  • 146 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 75 篇 工学
    • 59 篇 计算机科学与技术...
    • 55 篇 软件工程
    • 24 篇 控制科学与工程
    • 16 篇 信息与通信工程
    • 10 篇 生物工程
    • 8 篇 光学工程
    • 7 篇 生物医学工程(可授...
    • 5 篇 化学工程与技术
    • 3 篇 机械工程
    • 3 篇 仪器科学与技术
    • 2 篇 电气工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 建筑学
    • 2 篇 土木工程
    • 1 篇 力学(可授工学、理...
  • 55 篇 理学
    • 27 篇 数学
    • 17 篇 物理学
    • 12 篇 统计学(可授理学、...
    • 11 篇 生物学
    • 6 篇 系统科学
    • 5 篇 化学
    • 3 篇 地球物理学
    • 2 篇 天文学
  • 31 篇 管理学
    • 20 篇 管理科学与工程(可...
    • 14 篇 图书情报与档案管...
    • 2 篇 工商管理
  • 6 篇 医学
    • 6 篇 临床医学
    • 5 篇 基础医学(可授医学...
    • 5 篇 药学(可授医学、理...
  • 1 篇 文学
    • 1 篇 新闻传播学
  • 1 篇 艺术学

主题

  • 24 篇 feature extracti...
  • 12 篇 training
  • 11 篇 support vector m...
  • 11 篇 pattern recognit...
  • 11 篇 principal compon...
  • 9 篇 neural networks
  • 9 篇 histograms
  • 9 篇 kernel
  • 8 篇 image processing
  • 8 篇 remote sensing
  • 7 篇 electroencephalo...
  • 6 篇 discrete wavelet...
  • 5 篇 face recognition
  • 5 篇 scattering
  • 5 篇 independent comp...
  • 5 篇 algorithm design...
  • 5 篇 bayesian methods
  • 5 篇 feedforward neur...
  • 5 篇 image analysis
  • 5 篇 robustness

机构

  • 74 篇 image processing...
  • 13 篇 school of comput...
  • 9 篇 laboratory of im...
  • 5 篇 university of ch...
  • 4 篇 school of inform...
  • 3 篇 image processing...
  • 3 篇 national laborat...
  • 3 篇 department of au...
  • 3 篇 the school of co...
  • 3 篇 school of comput...
  • 3 篇 college of infor...
  • 3 篇 image processing...
  • 3 篇 image processing...
  • 3 篇 image processing...
  • 3 篇 institute of ima...
  • 3 篇 image processing...
  • 2 篇 school of founda...
  • 2 篇 tampereen yliopi...
  • 2 篇 image processing...
  • 2 篇 institute for as...

作者

  • 68 篇 ping guo
  • 31 篇 guo ping
  • 25 篇 qian yin
  • 11 篇 xin zheng
  • 11 篇 yin qian
  • 7 篇 hassan dawood
  • 6 篇 hussain dawood
  • 5 篇 bingxin xu
  • 5 篇 xinyu chen
  • 4 篇 zheng xin
  • 4 篇 jing wang
  • 4 篇 xu anbang
  • 4 篇 anbang xu
  • 3 篇 fang tao
  • 3 篇 rukun hu
  • 3 篇 liu cheng-lin
  • 3 篇 xu bingxin
  • 3 篇 duan fuqing
  • 3 篇 fuqing duan
  • 3 篇 wang hongfeng

语言

  • 144 篇 英文
  • 2 篇 中文
检索条件"机构=Image Processing and Pattern Recognition Laboratory Beijing Normal University"
146 条 记 录,以下是31-40 订阅
排序:
Feature data optimization with LVQ technique in semantic image annotation
Feature data optimization with LVQ technique in semantic ima...
收藏 引用
2010 10th International Conference on Intelligent Systems Design and Applications, ISDA'10
作者: Jiang, Ziheng He, Jing Guo, Ping School of Computer Science and Technology Beijing Institute of Technology Beijing 100081 China Image Processing and Pattern Recognition Laboratory Beijing Normal University Beijing 100875 China
In order to improve the classifier performance in semantic image annotation, we propose a novel method which adopts learning vector quantization (LVQ) technique to optimize low level feature data extracted from given ... 详细信息
来源: 评论
Radio frequency interference mitigation using pseudoinverse learning autoencoders
收藏 引用
Research in Astronomy and Astrophysics 2020年 第8期20卷 121-128页
作者: Hong-Feng Wang Mao Yuan Qian Yin Ping Guo Wei-Wei Zhu Di Li Si-Bo Feng Image Processing and Pattern Recognition Laboratory School of Artificial IntelligenceBeijing Normal UniversityBeijing 100875China CAS Key Laboratory of FAST National Astronomical ObservatoriesChinese Academy of SciencesBeijing 100101China School of Information Management Dezhou UniversityDezhou 253023China Image Processing and Pattern Recognition Laboratory School of System ScienceBeijing Normal UniversityBeijing 100875China Institute for Astronomical Science Dezhou UniversityDezhou 253023China University of Chinese Academy of Sciences Beijing 100049China Hanvon Technology Co. LtdBeijing 100193China NAOC-UKZN Computational Astrophysics Centre University of KwaZulu-NatalDurban 4000South Africa
Radio frequency interference(RFI)is an important challenge in radio *** comes from various sources and increasingly impacts astronomical observation as telescopes become more *** this study,we propose a fast and effec... 详细信息
来源: 评论
Multiple kernel learning method using MRMR criterion and kernel alignment
Multiple kernel learning method using MRMR criterion and ker...
收藏 引用
20th International Conference on Neural Information processing, ICONIP 2013
作者: Wu, Peng Duan, Fuqing Guo, Ping Image Processing and Pattern Recognition Laboratory Beijing Normal University Beijing 100875 China Shandong Provincial Key Laboratory of Network Based Intelligent Computing University of Jinan Jinan 250022 China
Multiple kernel learning (MKL) is a widely used kernel learning method, but how to select kernel is lack of theoretical guidance. The performance of MKL is depend on the users' experience, which is difficult to ch... 详细信息
来源: 评论
Why is the Danger Cylinder Dangerous in the P3P Problem?
收藏 引用
自动化学报 2006年 第4期32卷 504-511页
作者: ZHANG Cai-Xia HU Zhan-Yi National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing 100080 Institute of Image Processing and Pattern Recognition North China University of Technology Beijing 100041
The PnP problem is a widely used technique for pose determination in computer vision community,and finding out geometric conditions of multiple solutions is the ultimate and most desirable goal of the multi-solution a... 详细信息
来源: 评论
Multi-regularization parameters estimation for Gaussian mixture classifier based on MDL principle
Multi-regularization parameters estimation for Gaussian mixt...
收藏 引用
International Conference on Neural Computation Theory and Applications, NCTA 2011
作者: Zhou, Xiuling Guo, Ping Philip Chen, C.L. Laboratory of Image Processing and Pattern Recognition Beijing Normal University Beijing 100875 China Artificial Intelligence Institute Beijing City University Beijing China Faculty of Science and Technology University of Macau Macau China
Regularization is a solution to solve the problem of unstable estimation of covariance matrix with a small sample set in Gaussian classifier. And multi-regularization parameters estimation is more difficult than singl... 详细信息
来源: 评论
Learning Multiple Pooling Combination for image Classification
Learning Multiple Pooling Combination for Image Classificati...
收藏 引用
International Joint Conference on Neural Networks
作者: Junlin Hu Ping Guo Image Processing and Pattern Recognition Laboratory Beijing Normal University
Recently sparse coding with spatial pyramid matching method has shown its excellent performance in image classification. Inspired by this technique, we present an image classification approach by learning the optimal ... 详细信息
来源: 评论
image Stitching with single-hidden layer feedforward Neural Networks
Image Stitching with single-hidden layer feedforward Neural ...
收藏 引用
International Joint Conference on Neural Networks
作者: Min Yan Qian Yin Ping Guo Image Processing and Pattern Recognition Laboratory Beijing Normal University
In this paper, a novel image stitching method is proposed, which utilizes scale-invariant feature transform (SIFT) feature and single-hidden layer feedforward neural network (SLFN) to get higher precision of parameter... 详细信息
来源: 评论
Kernel Selection with Evolutionary Algorithm for Multiple Kernel Independent Component Analysis
Kernel Selection with Evolutionary Algorithm for Multiple Ke...
收藏 引用
International Joint Conference on Neural Networks
作者: Peng Wu Qian Yin Ping Guo Image Processing and Pattern Recognition Laboratory Beijing Normal University
Kernel independent component analysis (KICA) has an important application in blind source separation, in which how to select the optimal kernel, including the kernel functional form and its parameters, is the key issu... 详细信息
来源: 评论
image Segmentation Based on Visual Perception Model
Image Segmentation Based on Visual Perception Model
收藏 引用
2012年计算机应用与系统建模国际会议
作者: Shuai Shao Fuqing Duan Ping Guo Image Processing and Pattern Recognition Laboratory Beijing Normal University
image segmentation is the basis of image processing and image analysis. However, there are no common method that can be used in natural images, and present methods fail to explain understandings of human's visual ... 详细信息
来源: 评论
MULTISPECTRAL REMOTE SENSING image CLASSIFICATION WITH MULTIPLE FEATURES
MULTISPECTRAL REMOTE SENSING IMAGE CLASSIFICATION WITH MULTI...
收藏 引用
2007 International Conference on Machine Learning and Cybernetics(IEEE第六届机器学习与控制论国际会议)
作者: QIAN YIN PING GUO Image Processing and Pattern Recognition Laboratory Beijing Normal University Beijing 100875 Chin Image Processing and Pattern Recognition Laboratory Beijing Normal University Beijing 100875 Chin
In this paper, we propose to combine the spectral and texture features to compose the multi-feature vectors for the classification of multispectral remote sensing *** usually is difficult to obtain the higher classifi... 详细信息
来源: 评论