咨询与建议

限定检索结果

文献类型

  • 114 篇 会议
  • 32 篇 期刊文献

馆藏范围

  • 146 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 75 篇 工学
    • 59 篇 计算机科学与技术...
    • 55 篇 软件工程
    • 24 篇 控制科学与工程
    • 16 篇 信息与通信工程
    • 10 篇 生物工程
    • 8 篇 光学工程
    • 7 篇 生物医学工程(可授...
    • 5 篇 化学工程与技术
    • 3 篇 机械工程
    • 3 篇 仪器科学与技术
    • 2 篇 电气工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 建筑学
    • 2 篇 土木工程
    • 1 篇 力学(可授工学、理...
  • 55 篇 理学
    • 27 篇 数学
    • 17 篇 物理学
    • 12 篇 统计学(可授理学、...
    • 11 篇 生物学
    • 6 篇 系统科学
    • 5 篇 化学
    • 3 篇 地球物理学
    • 2 篇 天文学
  • 31 篇 管理学
    • 20 篇 管理科学与工程(可...
    • 14 篇 图书情报与档案管...
    • 2 篇 工商管理
  • 6 篇 医学
    • 6 篇 临床医学
    • 5 篇 基础医学(可授医学...
    • 5 篇 药学(可授医学、理...
  • 1 篇 文学
    • 1 篇 新闻传播学
  • 1 篇 艺术学

主题

  • 24 篇 feature extracti...
  • 12 篇 training
  • 11 篇 support vector m...
  • 11 篇 pattern recognit...
  • 11 篇 principal compon...
  • 9 篇 neural networks
  • 9 篇 histograms
  • 9 篇 kernel
  • 8 篇 image processing
  • 8 篇 remote sensing
  • 7 篇 electroencephalo...
  • 6 篇 discrete wavelet...
  • 5 篇 face recognition
  • 5 篇 scattering
  • 5 篇 independent comp...
  • 5 篇 algorithm design...
  • 5 篇 bayesian methods
  • 5 篇 feedforward neur...
  • 5 篇 image analysis
  • 5 篇 robustness

机构

  • 74 篇 image processing...
  • 13 篇 school of comput...
  • 9 篇 laboratory of im...
  • 5 篇 university of ch...
  • 4 篇 school of inform...
  • 3 篇 image processing...
  • 3 篇 national laborat...
  • 3 篇 department of au...
  • 3 篇 the school of co...
  • 3 篇 school of comput...
  • 3 篇 college of infor...
  • 3 篇 image processing...
  • 3 篇 image processing...
  • 3 篇 image processing...
  • 3 篇 institute of ima...
  • 3 篇 image processing...
  • 2 篇 school of founda...
  • 2 篇 tampereen yliopi...
  • 2 篇 image processing...
  • 2 篇 institute for as...

作者

  • 68 篇 ping guo
  • 31 篇 guo ping
  • 25 篇 qian yin
  • 11 篇 xin zheng
  • 11 篇 yin qian
  • 7 篇 hassan dawood
  • 6 篇 hussain dawood
  • 5 篇 bingxin xu
  • 5 篇 xinyu chen
  • 4 篇 zheng xin
  • 4 篇 jing wang
  • 4 篇 xu anbang
  • 4 篇 anbang xu
  • 3 篇 fang tao
  • 3 篇 rukun hu
  • 3 篇 liu cheng-lin
  • 3 篇 xu bingxin
  • 3 篇 duan fuqing
  • 3 篇 fuqing duan
  • 3 篇 wang hongfeng

语言

  • 144 篇 英文
  • 2 篇 中文
检索条件"机构=Image Processing and Pattern Recognition Laboratory Beijing Normal University"
146 条 记 录,以下是71-80 订阅
排序:
Optimal classification of epileptic EEG signals using neural networks and harmony search methods
Journal of Software
收藏 引用
Journal of Software 2014年 第1期9卷 230-239页
作者: Gao, Xiao-Zhi Wang, Jing Tanskanen, Jarno M. A. Bie, Rongfang Wang, Xiaolei Guo, Ping Zenger, Kai College of Information Engineering Shanghai Maritime University China Department of Automation and Systems Technology Aalto University School of Electrical Engineering Finland Laboratory of Image Processing and Pattern Recognition Beijing Normal University China Department of Biomedical Engineering Tampere University of Technology Finland School of Foundational Education Peking University Health Science Center China
In this paper, the Harmony Search (HS)-aided BP neural networks are used for the classification of the epileptic electroencephalogram (EEG) signals. It is well known that the gradient descent-based learning method can... 详细信息
来源: 评论
Statistical image Upsampling Method Based on CUDA
Statistical Image Upsampling Method Based on CUDA
收藏 引用
International Conference on Computational Intelligence and Security
作者: Xin Zheng Qingqing Xu Peipei Pan Ping Guo Image Processing and Pattern Recognition Laboratory Beijing Normal University Beijing P.R. China
In many application fields, an appropriate high-quality fast image upsampling method is required. Although many interpolation-based upsampling methods have been proposed, the quality of result images is not satisfacto... 详细信息
来源: 评论
image Completion with Automatic Structure Propagation
Image Completion with Automatic Structure Propagation
收藏 引用
International Conference on Computational Intelligence and Security
作者: Peipei Pan Xin Zheng Qingqing Xu Ping Guo Image Processing and Pattern Recognition Laboratory Beijing Normal University Beijing P.R. China
In this paper, we propose a novel approach for image completion with automatic structure propagation. This method integrates two stages: Firstly, it extends the salient structure lines from the known regions to the un... 详细信息
来源: 评论
An Improved Random Sampling LDA for Face recognition
An Improved Random Sampling LDA for Face Recognition
收藏 引用
Congress on image and Signal processing, CISP
作者: Yunfei Jiang Xinyu Chen Ping Guo Hanqing Lu Laboratory of Image Processing and Pattern Recognition Beijing Normal University Beijing China National Laboratory of Pattern Recognition Institute of Automation Chinese Academy and Sciences Beijing China
Linear Discriminant Analysis (LDA) is one of the most used feature extraction techniques for face recognition. However, it often suffers from the small sample size problem with high dimension setting. Random Subspace ... 详细信息
来源: 评论
Classifier-based feature fusion for texture discrimination
Classifier-based feature fusion for texture discrimination
收藏 引用
2009 International Conference on Information Engineering and Computer Science, ICIECS 2009
作者: Ma, Jianglin Zhang, Zhouwei Wang, Chengyi Chen, Zhong Remote Sensing Image Processing Laboratory Institute of Remote Sensing Applications CAS Beijing China Institute for Pattern Recognition and Artificial Intelligence Huazhong University of Science and Technology Wuhan China
A classifier-based method to select and fuse grey level co-occurrence matrix (GLCM), Gaussian Markov random field (GMRF) and discrete wavelet transform (DWT) features to improve texture discrimination is presented. Fe... 详细信息
来源: 评论
Synergetic Learning Systems: Concept, Architecture, and Algorithms
arXiv
收藏 引用
arXiv 2020年
作者: Guo, Ping Yin, Qian Image Processing & Pattern Recognition Lab Beijing Normal University Beijing100875 China
Drawing on the idea that brain development is a Darwinian process of "evolution + selection" and the idea that the current state is a local equilibrium state of many bodies with self-organization and evoluti... 详细信息
来源: 评论
KICA Feature Extraction in Application to FNN based image Registration
KICA Feature Extraction in Application to FNN based Image Re...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Anbang Xu Xin Jin Ping Guo R. Bie Processing and Pattern Recognition Laboratory Beijing Normal University Beijing China
In this paper, a novel image registration method is proposed. In the proposed method, kernel independent component analysis (KICA) is applied to extract features from the image sets, and these features are input vecto... 详细信息
来源: 评论
image Representation via Sub-dictionary based Sparse Coding
Image Representation via Sub-dictionary based Sparse Coding
收藏 引用
International Joint Conference on Neural Networks
作者: Bingxin Xu Qian Yin Ping Guo Hongzhe Liu Beijing Key Laboratory of Information Service Engineering Beijing Union University Image Processing and Pattern Recognition Laboratory Beijing Normal University
In this paper, a sub-dictionary based sparse coding method is proposed for image representation. The novel sparse coding method substitutes a new regularization item for L1-norm in the sparse representation model. The... 详细信息
来源: 评论
Multi-source remote sensing classification based on Mallat fusion and residual error feature selection
Journal of Digital Information Management
收藏 引用
Journal of Digital Information Management 2007年 第3期5卷 130-137页
作者: Cao, Dongdong Yin, Qian Guo, Ping Image Processing and Pattern Recognition Laboratory Beijing Normal University Beijing 100875 China School of Computer Science Beijing Institute of Technology Beijing 100081 China
Classification of multi-source remote sensing images has been studied for decades, and many methods have been proposed or improved. Most of these studies focus on how to improve the classifiers in order to obtain high... 详细信息
来源: 评论
Two-dimensional multi-fiber spectrum image correction based on machine learning techniques
arXiv
收藏 引用
arXiv 2020年
作者: Xu, Jiali Yin, Qian Guo, Ping Zheng, Xin Image Processing and Pattern Recognition Lab. School of Artificial Intelligence Beijing Normal University Beijing100875 China Image Processing and Pattern Recognition Lab School of Systems Science Beijing Normal University Beijing100875 China
Due to limited size and imperfect of the optical components in a spectrometer, aberration has inevitably been brought into two-dimensional multi-fiber spectrum image in LAMOST, which leads to obvious spacial variation... 详细信息
来源: 评论