咨询与建议

限定检索结果

文献类型

  • 114 篇 会议
  • 35 篇 期刊文献

馆藏范围

  • 149 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 78 篇 工学
    • 59 篇 计算机科学与技术...
    • 54 篇 软件工程
    • 25 篇 控制科学与工程
    • 17 篇 信息与通信工程
    • 10 篇 生物工程
    • 9 篇 光学工程
    • 7 篇 生物医学工程(可授...
    • 5 篇 化学工程与技术
    • 3 篇 机械工程
    • 3 篇 仪器科学与技术
    • 3 篇 电气工程
    • 3 篇 建筑学
    • 3 篇 土木工程
    • 2 篇 电子科学与技术(可...
    • 1 篇 力学(可授工学、理...
  • 55 篇 理学
    • 27 篇 数学
    • 17 篇 物理学
    • 12 篇 统计学(可授理学、...
    • 11 篇 生物学
    • 6 篇 系统科学
    • 5 篇 化学
    • 3 篇 地球物理学
    • 2 篇 天文学
  • 31 篇 管理学
    • 20 篇 管理科学与工程(可...
    • 14 篇 图书情报与档案管...
    • 2 篇 工商管理
  • 6 篇 医学
    • 6 篇 临床医学
    • 5 篇 基础医学(可授医学...
    • 5 篇 药学(可授医学、理...
  • 1 篇 文学
    • 1 篇 新闻传播学
  • 1 篇 艺术学

主题

  • 24 篇 feature extracti...
  • 12 篇 training
  • 11 篇 support vector m...
  • 11 篇 pattern recognit...
  • 11 篇 principal compon...
  • 9 篇 neural networks
  • 9 篇 image processing
  • 9 篇 histograms
  • 9 篇 kernel
  • 8 篇 remote sensing
  • 7 篇 electroencephalo...
  • 6 篇 discrete wavelet...
  • 5 篇 face recognition
  • 5 篇 scattering
  • 5 篇 independent comp...
  • 5 篇 algorithm design...
  • 5 篇 bayesian methods
  • 5 篇 feedforward neur...
  • 5 篇 image analysis
  • 5 篇 robustness

机构

  • 74 篇 image processing...
  • 13 篇 school of comput...
  • 9 篇 laboratory of im...
  • 5 篇 university of ch...
  • 4 篇 school of inform...
  • 3 篇 image processing...
  • 3 篇 national laborat...
  • 3 篇 department of au...
  • 3 篇 the school of co...
  • 3 篇 school of comput...
  • 3 篇 college of infor...
  • 3 篇 image processing...
  • 3 篇 image processing...
  • 3 篇 image processing...
  • 3 篇 institute of ima...
  • 3 篇 image processing...
  • 2 篇 school of founda...
  • 2 篇 tampereen yliopi...
  • 2 篇 image processing...
  • 2 篇 institute for as...

作者

  • 68 篇 ping guo
  • 31 篇 guo ping
  • 25 篇 qian yin
  • 11 篇 xin zheng
  • 11 篇 yin qian
  • 7 篇 hassan dawood
  • 6 篇 hussain dawood
  • 5 篇 bingxin xu
  • 5 篇 jing wang
  • 5 篇 xinyu chen
  • 4 篇 zheng xin
  • 4 篇 xu anbang
  • 4 篇 anbang xu
  • 3 篇 fang tao
  • 3 篇 rukun hu
  • 3 篇 liu cheng-lin
  • 3 篇 xu bingxin
  • 3 篇 duan fuqing
  • 3 篇 fuqing duan
  • 3 篇 wang hongfeng

语言

  • 147 篇 英文
  • 2 篇 中文
检索条件"机构=Image Processing and Pattern Recognition Laboratory Beijing Normal University"
149 条 记 录,以下是81-90 订阅
排序:
image Completion with Automatic Structure Propagation
Image Completion with Automatic Structure Propagation
收藏 引用
International Conference on Computational Intelligence and Security
作者: Peipei Pan Xin Zheng Qingqing Xu Ping Guo Image Processing and Pattern Recognition Laboratory Beijing Normal University Beijing P.R. China
In this paper, we propose a novel approach for image completion with automatic structure propagation. This method integrates two stages: Firstly, it extends the salient structure lines from the known regions to the un... 详细信息
来源: 评论
An Algorithm for Calculating the Hypervolume Contribution of a Set
An Algorithm for Calculating the Hypervolume Contribution of...
收藏 引用
World Automation Congress
作者: Xiuling Zhou Ping Guo C. L. Philip Chen Image Processing and Pattern Recognition Lab Beijing Normal University Beijing 100875 China The Faculty of Science and Technology University of Macau Macau SAR China
The reliability model can be optimized with a multi-objective optimization algorithm, while hypervolume-based multi-objective evolutionary algorithms (MOEAs) have been shown to produce better results for multi-objecti... 详细信息
来源: 评论
Epileptic EEG Signal Classification with ANFIS Based on Harmony Search Method
Epileptic EEG Signal Classification with ANFIS Based on Harm...
收藏 引用
International Conference on Computational Intelligence and Security
作者: Jing Wang X.Z. Gao Jarno M.A. Tanskanen Ping Guo Laboratory of Image Processing and Pattern Recognition Beijing Normal University Beijing China Department of Automation and Systems Technology Aalto University School of Electrical Engineering Finland Tampereen yliopisto - Hervannan kampus Tampere Pirkanmaa FI
In this paper, the Adaptive Neuro-Fuzzy Inference System (ANFIS) is used for the classification of the epileptic electroencephalogram (EEG) signals. The ANFIS combines the adaptation capability of the neural networks ... 详细信息
来源: 评论
Experimental Comparison of Geometric, Arithmetic and Harmonic Means for EEG Event Related Potential Detection
Experimental Comparison of Geometric, Arithmetic and Harmoni...
收藏 引用
International Conference on Computational Intelligence and Security
作者: Jarno M.A. Tanskanen X.Z. Gao Jing Wang Ping Guo Jari A.K. Hyttinen Vassil S. Dimitrov Department of Biomedical Engineering Tampere University of Technology and BioMediTech Finland College of Information Engineering Shanghai Maritime University China Laboratory of Image Processing and Pattern Recognition Beijing Normal University Beijing China ATIPS Laboratory University of Calgary AB Canada
In this paper, we experimentally evaluate three different averaging methods for processing of electroencephalogram (EEG) event related potentials (ERPs) measured from scalp in response to repeated stimulus. In ERP app... 详细信息
来源: 评论
BP Neural Networks with Harmony Search Method-based Training for Epileptic EEG Signal Classification
BP Neural Networks with Harmony Search Method-based Training...
收藏 引用
International Conference on Computational Intelligence and Security
作者: Xiao-Zhi Gao Jing Wang Jarno M.A. Tanskanen Rongfang Bie Ping Guo College of Information Engineering Shanghai Maritime University China laboratory of Image Processing and Pattern Recognition Beijinz Normal University China Tampereen yliopisto - Hervannan kampus Tampere Pirkanmaa FI
In this paper, the Harmony Search (HS)-based BP neural networks are used for the classification of the epileptic electroencephalogram (EEG) signals. It is well known that the gradient descent-based learning method can... 详细信息
来源: 评论
Epileptic EEG signal classification with marching pursuit based on harmony search method
Epileptic EEG signal classification with marching pursuit ba...
收藏 引用
IEEE International Conference on Systems, Man and Cybernetics
作者: Ping Guo Jing Wang X. Z. Gao Jarno M. A. Tanskanen Laboratory of Image Processing and Pattern Recognition Beijing Normal University Beijing China School of Foundational Education Peking University Health Science Center China Department of Automation and Systems Technology Aalto University School of Electrical Engineering Finland Department of Biomedical Engineering Tampere University of Technology Finland
In Epilepsy EEG signal classification, the main time-frequency features can be extracted by using sparse representation with marching pursuit (MP) algorithm. However, the computational burden is so heavy that it is al... 详细信息
来源: 评论
Software fault prediction framework based on aiNet algorithm
Software fault prediction framework based on aiNet algorithm
收藏 引用
2011 7th International Conference on Computational Intelligence and Security, CIS 2011
作者: Yin, Qian Luo, Ruiyi Guo, Ping Image Processing and Pattern Recognition Laboratory Beijing Normal University Beijing China
Software fault prediction techniques are helpful in developing dependable software. In this paper, we proposed a novel framework that integrates testing and prediction process for unit testing prediction. Because high... 详细信息
来源: 评论
Sparse representation for multi-label image annotation
Sparse representation for multi-label image annotation
收藏 引用
2011 7th International Conference on Computational Intelligence and Security, CIS 2011
作者: Xu, Bingxin Guo, Ping Image Processing and Pattern Recognition Laboratory Beijing Normal University Beijing 100875 China
image annotation is the process of assigning proper keywords to describe the content of a given image, which can be regarded as a problem of multi-object image classification. In this paper, a general multi-label anno... 详细信息
来源: 评论
Multi-level kernel machine for scene image classification
Multi-level kernel machine for scene image classification
收藏 引用
2011 7th International Conference on Computational Intelligence and Security, CIS 2011
作者: Hu, Junlin Guo, Ping Image Processing and Pattern Recognition Laboratory Beijing Normal University Beijing 100875 China
Recently, a new representation for recognizing instances and categories of scenes called spatial Principal component analysis of Census Transform histograms (PACT) has shown its excellent performance in the scene imag... 详细信息
来源: 评论
Multi-regularization parameters estimation for Gaussian mixture classifier based on MDL principle
Multi-regularization parameters estimation for Gaussian mixt...
收藏 引用
International Conference on Neural Computation Theory and Applications, NCTA 2011
作者: Zhou, Xiuling Guo, Ping Philip Chen, C.L. Laboratory of Image Processing and Pattern Recognition Beijing Normal University Beijing 100875 China Artificial Intelligence Institute Beijing City University Beijing China Faculty of Science and Technology University of Macau Macau China
Regularization is a solution to solve the problem of unstable estimation of covariance matrix with a small sample set in Gaussian classifier. And multi-regularization parameters estimation is more difficult than singl... 详细信息
来源: 评论