咨询与建议

限定检索结果

文献类型

  • 467 篇 会议
  • 194 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 663 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 417 篇 工学
    • 259 篇 计算机科学与技术...
    • 223 篇 软件工程
    • 107 篇 信息与通信工程
    • 76 篇 光学工程
    • 64 篇 控制科学与工程
    • 53 篇 生物医学工程(可授...
    • 50 篇 生物工程
    • 49 篇 电子科学与技术(可...
    • 46 篇 机械工程
    • 40 篇 电气工程
    • 32 篇 化学工程与技术
    • 19 篇 仪器科学与技术
    • 18 篇 交通运输工程
    • 10 篇 材料科学与工程(可...
    • 9 篇 力学(可授工学、理...
    • 9 篇 建筑学
    • 9 篇 土木工程
    • 8 篇 航空宇航科学与技...
  • 252 篇 理学
    • 138 篇 数学
    • 97 篇 物理学
    • 59 篇 生物学
    • 50 篇 统计学(可授理学、...
    • 31 篇 化学
    • 18 篇 系统科学
  • 101 篇 管理学
    • 57 篇 图书情报与档案管...
    • 54 篇 管理科学与工程(可...
    • 10 篇 工商管理
  • 35 篇 医学
    • 30 篇 临床医学
    • 25 篇 基础医学(可授医学...
    • 19 篇 药学(可授医学、理...
  • 7 篇 经济学
  • 6 篇 艺术学
  • 5 篇 法学
  • 5 篇 农学
  • 3 篇 教育学
  • 3 篇 军事学
  • 2 篇 文学
  • 1 篇 哲学

主题

  • 50 篇 feature extracti...
  • 49 篇 pattern recognit...
  • 44 篇 image segmentati...
  • 40 篇 image processing
  • 23 篇 image analysis
  • 21 篇 support vector m...
  • 21 篇 laboratories
  • 20 篇 training
  • 19 篇 computer vision
  • 18 篇 object detection
  • 17 篇 convolution
  • 17 篇 robustness
  • 15 篇 shape
  • 15 篇 principal compon...
  • 15 篇 layout
  • 14 篇 artificial intel...
  • 14 篇 image recognitio...
  • 14 篇 image reconstruc...
  • 13 篇 face recognition
  • 13 篇 histograms

机构

  • 74 篇 image processing...
  • 35 篇 institute of ima...
  • 23 篇 fujian key labor...
  • 22 篇 school of inform...
  • 18 篇 school of comput...
  • 17 篇 key laboratory o...
  • 15 篇 fujian key labor...
  • 15 篇 institute for pa...
  • 15 篇 school of softwa...
  • 14 篇 key laboratory o...
  • 13 篇 school of comput...
  • 12 篇 hubei key labora...
  • 12 篇 hubei engineerin...
  • 11 篇 college of compu...
  • 11 篇 pattern recognit...
  • 10 篇 key laboratory o...
  • 9 篇 institute of ima...
  • 9 篇 school of electr...
  • 9 篇 laboratory of im...
  • 8 篇 key laboratory o...

作者

  • 64 篇 ping guo
  • 35 篇 yang jie
  • 27 篇 guo ping
  • 25 篇 qian yin
  • 25 篇 wang da-han
  • 23 篇 huang xiaolin
  • 19 篇 jie yang
  • 14 篇 liu jian
  • 12 篇 ding mingyue
  • 12 篇 da-han wang
  • 12 篇 zhu shunzhi
  • 12 篇 zhang tianxu
  • 12 篇 li qishen
  • 12 篇 jian liu
  • 12 篇 shen hong-bin
  • 10 篇 loog marco
  • 10 篇 he fan
  • 10 篇 qishen li
  • 9 篇 xin zheng
  • 9 篇 fang tao

语言

  • 622 篇 英文
  • 25 篇 其他
  • 16 篇 中文
检索条件"机构=Image and Pattern Recognition Laboratory"
663 条 记 录,以下是121-130 订阅
排序:
Detection of Venous Thromboembolism Using Recurrent Neural Networks with Time-Series Data  24
Detection of Venous Thromboembolism Using Recurrent Neural N...
收藏 引用
3rd Asia Conference on Algorithms, Computing and Machine Learning, CACML 2024
作者: Xu, Can Huang, Yaqin Xiang, Xinni Lei, Haike Yang, Jie Shanghai Jiao Tong University Shanghai China Chongqing University Cancer Hospital Chongqing China West China Hospital Sichuan University Chengdu China Shanghai Jiao Tong University Institute of Image Processing and Pattern Recognition China Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment China West China School of Medicine China Chongqing Cancer Multi-omics Big Data Application Engineering Research Center China
Machine Learning (ML) has been widely applied to medical science for decades. As common knowledge, the progress of many diseases is often chronic and dynamic. Longitudinal data, or time-series data, has better descrip... 详细信息
来源: 评论
Novel Regularization Method for Reduced Biquaternion Neural Network
SSRN
收藏 引用
SSRN 2023年
作者: Gai, Shan Huang, Xiang School of Information Science and Engineering Yanshan University Hebei Qinhuangdao066004 China Key Laboratory of Jiangxi Province for Image Processing and Pattern Recognition Nanchang Hangkong University Jiangxi Nanchang330063 China
A reduced biquaternion neural network (RQNN) is a new type of neural network framework that has achieved significant success in machine learning. However, as the reduced biquaternion algebra system contains infinite z... 详细信息
来源: 评论
Similarity-based Attention Embedding Approach for Attributed Graph Clustering
Journal of Network Intelligence
收藏 引用
Journal of Network Intelligence 2022年 第4期7卷 848-861页
作者: Weng, Wei Li, Tong Liao, Jian-Chao Guo, Feng Chen, Fen Wei, Bo-Wen College of Computer and Information Engineering Xiamen University of Technology Fujian Key Laboratory of Pattern Recognition and Image Understanding Xiamen361024 China College of Computer and Information Engineering Xiamen University of Technology Xiamen361024 China Fujian Newland Auto-ID Tech. Co. Ltd Fuzhou350015 China Xiamen Fuyun Information Tech. Co. Ltd Xiamen361008 China
Graph clustering is a fundamental method for studying complex networks. Some existing approaches focus on the graph data without attributed information. However, graph data in the real world generally have attribute i... 详细信息
来源: 评论
NLFA: A Non Local Fusion Alignment Module for Multi-Scale Feature in Object Detection  3rd
NLFA: A Non Local Fusion Alignment Module for Multi-Scale Fe...
收藏 引用
3rd International Symposium on Automation, Mechanical and Design Engineering, SAMDE 2022
作者: Xue, Honghui Ma, Jinshan Cai, Zheyi Fu, Junfang Guo, Feng Weng, Wei Dong, Yunxin Zhang, Zhenchang College of Computer and Information Sciences Fujian Agriculture and Forestry University Fuzhou China Fujian Zhongke Zhongxin Intelligent Technology Co. Ltd Fuzhou China Fujian Newland Auto-ID Tech. Co. Ltd Fuzhou China Department of Computer and Information Engineering Xiamen University of Technology Xiamen China Fujian Key Laboratory of Pattern Recognition and Image Understanding Xiamen China
Recently, in order to pursue better detection results, more convolutional layers and deeper networks are a direction pursued by everyone. However, more and more down-sampling convolution or up-sampling operations gene... 详细信息
来源: 评论
Hybrid Data-Free Knowledge Distillation  39
Hybrid Data-Free Knowledge Distillation
收藏 引用
39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
作者: Tang, Jialiang Chen, Shuo Gong, Chen School of Computer Science and Engineering Nanjing University of Science and Technology China Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education China Jiangsu Key Laboratory of Image and Video Understanding for Social Security China Center for Advanced Intelligence Project RIKEN Japan Department of Automation Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University China
Data-free knowledge distillation aims to learn a compact student network from a pre-trained large teacher network without using the original training data of the teacher network. Existing collection-based and generati... 详细信息
来源: 评论
Learn What You Need in Personalized Federated Learning
arXiv
收藏 引用
arXiv 2024年
作者: Lv, Kexin Ye, Rui Huang, Xiaolin Yang, Jie Chen, Siheng Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai200240 China Shanghai Jiao Tong University Shanghai200240 China Shanghai Jiao Tong University Shanghai200240 China Shanghai AI Laboratory Shanghai200232 China
Personalized federated learning aims to address data heterogeneity across local clients in federated learning. However, current methods blindly incorporate either full model parameters or predefined partial parameters... 详细信息
来源: 评论
A Research Mode Based Evolutionary Algorithm for Many-Objective Optimization
收藏 引用
Chinese Journal of Electronics 2019年 第4期28卷 764-772页
作者: CHEN Guoyu LI Junhua Key Laboratory of Jiangxi Province for Image Processing and Pattern Recognition Nanchang Hangkong University
The development of algorithms to solve Many-objective optimization problems(MaOPs) has attracted significant research interest in recent *** various types of Pareto front(PF) is a daunting challenge for evolutionary a... 详细信息
来源: 评论
Generating Cartoon images from Face Photos with Cycle-Consistent Adversarial Networks
收藏 引用
Computers, Materials & Continua 2021年 第11期69卷 2733-2747页
作者: Tao Zhang Zhanjie Zhang Wenjing Jia Xiangjian He Jie Yang School of Artificial Intelligence and Computer Science Jiangnan UniversityWuxi214000China Key Laboratory of Artificial Intelligence Jiangsu214000China The Global Big Data Technologies Centre University of Technology SydneyUltimoNSW2007Australia The Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong UniversityShanghai201100China
The generative adversarial network(GAN)is first proposed in 2014,and this kind of network model is machine learning systems that can learn to measure a given distribution of data,one of the most important applications... 详细信息
来源: 评论
Online LiDAR-Camera Extrinsic Parameters Self-checking
arXiv
收藏 引用
arXiv 2022年
作者: Wei, Pengjin Yan, Guohang Li, Yikang Fang, Kun Yang, Jie Liu, Wei The Institute of Image Processing and Pattern Recognition Department of Automation Shanghai Jiao Tong University China The Autonomous Driving Group Shanghai AI Laboratory China
With the development of neural networks and the increasing popularity of automatic driving, the calibration of the LiDAR and the camera has attracted more and more attention. This calibration task is multi-modal, wher... 详细信息
来源: 评论
Semantic Transformation-Based Data Augmentation for Few-Shot Learning
SSRN
收藏 引用
SSRN 2023年
作者: Pan, Mei-Hong Xin, Hong-Yi Shen, Hong-Bin Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai200240 China Shanghai Jiaotong University Shanghai200240 China
Few-shot learning (FSL) as a data-scarce method, aims to recognize instances of unseen classes solely based on very few examples. However, the model can easily become overfitted due to the biased distribution formed w... 详细信息
来源: 评论