咨询与建议

限定检索结果

文献类型

  • 467 篇 会议
  • 194 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 663 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 417 篇 工学
    • 259 篇 计算机科学与技术...
    • 223 篇 软件工程
    • 107 篇 信息与通信工程
    • 76 篇 光学工程
    • 64 篇 控制科学与工程
    • 53 篇 生物医学工程(可授...
    • 50 篇 生物工程
    • 49 篇 电子科学与技术(可...
    • 46 篇 机械工程
    • 40 篇 电气工程
    • 32 篇 化学工程与技术
    • 19 篇 仪器科学与技术
    • 18 篇 交通运输工程
    • 10 篇 材料科学与工程(可...
    • 9 篇 力学(可授工学、理...
    • 9 篇 建筑学
    • 9 篇 土木工程
    • 8 篇 航空宇航科学与技...
  • 252 篇 理学
    • 138 篇 数学
    • 97 篇 物理学
    • 59 篇 生物学
    • 50 篇 统计学(可授理学、...
    • 31 篇 化学
    • 18 篇 系统科学
  • 101 篇 管理学
    • 57 篇 图书情报与档案管...
    • 54 篇 管理科学与工程(可...
    • 10 篇 工商管理
  • 35 篇 医学
    • 30 篇 临床医学
    • 25 篇 基础医学(可授医学...
    • 19 篇 药学(可授医学、理...
  • 7 篇 经济学
  • 6 篇 艺术学
  • 5 篇 法学
  • 5 篇 农学
  • 3 篇 教育学
  • 3 篇 军事学
  • 2 篇 文学
  • 1 篇 哲学

主题

  • 50 篇 feature extracti...
  • 49 篇 pattern recognit...
  • 44 篇 image segmentati...
  • 40 篇 image processing
  • 23 篇 image analysis
  • 21 篇 support vector m...
  • 21 篇 laboratories
  • 20 篇 training
  • 19 篇 computer vision
  • 18 篇 object detection
  • 17 篇 convolution
  • 17 篇 robustness
  • 15 篇 shape
  • 15 篇 principal compon...
  • 15 篇 layout
  • 14 篇 artificial intel...
  • 14 篇 image recognitio...
  • 14 篇 image reconstruc...
  • 13 篇 face recognition
  • 13 篇 histograms

机构

  • 74 篇 image processing...
  • 35 篇 institute of ima...
  • 23 篇 fujian key labor...
  • 22 篇 school of inform...
  • 18 篇 school of comput...
  • 17 篇 key laboratory o...
  • 15 篇 fujian key labor...
  • 15 篇 institute for pa...
  • 15 篇 school of softwa...
  • 14 篇 key laboratory o...
  • 13 篇 school of comput...
  • 12 篇 hubei key labora...
  • 12 篇 hubei engineerin...
  • 11 篇 college of compu...
  • 11 篇 pattern recognit...
  • 10 篇 key laboratory o...
  • 9 篇 institute of ima...
  • 9 篇 school of electr...
  • 9 篇 laboratory of im...
  • 8 篇 key laboratory o...

作者

  • 64 篇 ping guo
  • 35 篇 yang jie
  • 27 篇 guo ping
  • 25 篇 qian yin
  • 25 篇 wang da-han
  • 23 篇 huang xiaolin
  • 19 篇 jie yang
  • 14 篇 liu jian
  • 12 篇 ding mingyue
  • 12 篇 da-han wang
  • 12 篇 zhu shunzhi
  • 12 篇 zhang tianxu
  • 12 篇 li qishen
  • 12 篇 jian liu
  • 12 篇 shen hong-bin
  • 10 篇 loog marco
  • 10 篇 he fan
  • 10 篇 qishen li
  • 9 篇 xin zheng
  • 9 篇 fang tao

语言

  • 622 篇 英文
  • 25 篇 其他
  • 16 篇 中文
检索条件"机构=Image and Pattern Recognition Laboratory"
663 条 记 录,以下是251-260 订阅
排序:
Pulsar candidate selection using ensemble networks for FAST drift-scan survey
arXiv
收藏 引用
arXiv 2019年
作者: Wang, Hongfeng Zhu, Weiwei Guo, Ping Li, Di Feng, Sibo Yin, Qian Miao, Chenchen Tao, Zhenzhao Pan, Zhichen Wang, Pei Zheng, Xin Deng, Xiaodan Liu, Zhijie Xie, Xiaoyao Yu, Xuhong You, Shanping Zhang, Hui Image Processing and Pattern Recognition Laboratory College of Information Science and Technology Beijing Normal University Beijing100875 China CAS Key Laboratory of FAST Chinese Academy of Science Beijing100101 China School of Information Management Dezhou University Dezhou253023 China Image Processing and Pattern Recognition Laboratory School of Systems Science Beijing Normal University Beijing100875 China University of Chinese Academy of Sciences Beijing100049 China Key Laboratory of Information and Computing Science Guizhou Province Guizhou Normal University Guiyang550001 China School of Physics and Electronic Science Guizhou Normal University Guiyang550001 China
The Commensal Radio Astronomy Five-hundred-meter Aperture Spherical radio Telescope (FAST) Survey (CRAFTS) utilizes the novel drift-scan commensal survey mode of FAST and can generate billions of pulsar candidate sign... 详细信息
来源: 评论
AIM 2020 Challenge on image Extreme Inpainting  16th
AIM 2020 Challenge on Image Extreme Inpainting
收藏 引用
Workshops held at the 16th European Conference on Computer Vision, ECCV 2020
作者: Ntavelis, Evangelos Romero, Andrés Bigdeli, Siavash Timofte, Radu Hui, Zheng Wang, Xiumei Gao, Xinbo Shin, Chajin Kim, Taeoh Son, Hanbin Lee, Sangyoun Li, Chao Li, Fu He, Dongliang Wen, Shilei Ding, Errui Bai, Mengmeng Li, Shuchen Zeng, Yu Lin, Zhe Yang, Jimei Zhang, Jianming Shechtman, Eli Lu, Huchuan Zeng, Weijian Ni, Haopeng Cai, Yiyang Li, Chenghua Xu, Dejia Wu, Haoning Han, Yu Nadim, Uddin S. M. Jang, Hae Woong Ahmed, Soikat Hasan Yoon, Jungmin Jung, Yong Ju Li, Chu-Tak Liu, Zhi-Song Wang, Li-Wen Siu, Wan-Chi Lun, Daniel P. K. Suin, Maitreya Purohit, Kuldeep Rajagopalan, A.N. Narang, Pratik Mandal, Murari Chauhan, Pranjal Singh Computer Vision Lab ETH Zürich Zürich Switzerland CSEM Neuchâtel Switzerland School of Electronic Engineering Xidian University Xi’an China Image and Video Pattern Recognition Laboratory School of Electrical and Electronic Engineering Yonsei University Seoul Korea Republic of Baidu Inc. Beijing China Beijing China Dalian University of Technology Dalian China Adobe San Jose United States Rensselaer Polytechnic Institute Troy United States Peking University Beijing China Lab Gachon University Seongnam Korea Republic of Centre for Multimedia Signal Processing Department of Electronic and Information Engineering The Hong Kong Polytechnic University Hong Kong China Indian Institute of Technology Madras Chennai India BITS Pilani Pilani India MNIT Jaipur Jaipur India
This paper reviews the AIM 2020 challenge on extreme image inpainting. This report focuses on proposed solutions and results for two different tracks on extreme image inpainting: classical image inpainting and semanti... 详细信息
来源: 评论
EEG-Based Brain-Computer Interfaces Are Vulnerable to Backdoor Attacks
arXiv
收藏 引用
arXiv 2020年
作者: Meng, Lubin Huang, Jian Zeng, Zhigang Jiang, Xue Yu, Shan Jung, Tzyy-Ping Lin, Chin-Teng Chavarriaga, Ricardo Wu, Dongrui Ministry of Education Key Laboratory of Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan China Brainnetome Center National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing China La Jolla CA United States Center for Advanced Neurological Engineering Institute of Engineering in Medicine Ucsd La Jolla CA United States Centre of Artificial Intelligence Faculty of Engineering and Information Technology University of Technology Sydney Australia Zhaw DataLab Zürich University of Applied Sciences Winterthur8401 Switzerland
Research and development of electroencephalogram (EEG) based brain-computer interfaces (BCIs) have advanced rapidly, partly due to deeper understanding of the brain and wide adoption of sophisticated machine learning ... 详细信息
来源: 评论
Motion Object Detection Method based on Real-time Background Update under Complex Environment  2
Motion Object Detection Method based on Real-time Background...
收藏 引用
2017 IEEE 第2届先进信息技术,电子与自动化控制国际会议(IAEAC 2017)
作者: Zixiao Pan Mei Wang School of Automation Wuhan University of Technology Laboratory of Image Processing and Pattern Recognition Yantai Vocational College
For the fast requirement of motion object detection under complex environment, a background subtraction motion object detection method based on real-time background update is presented in this paper.
来源: 评论
An Adaptive Regulation Problem and Its Application
收藏 引用
International Journal of Automation and computing 2017年 第2期14卷 221-228页
作者: Yuan Jiang Ji-Yang Dai Key Laboratory of Image Processing and Pattern Recognition Nanchang Hangkong University Nanchang 330063 China School of Information Engineering Nanchang Hangkong University Nanchang 330063 China
This paper studies an adaptive regulation problem for the modified FitzHugh-Nagumo neuron model under external electrical stimulation. We first present the solution of the global robust output regulation problem for o... 详细信息
来源: 评论
Enlightening the relationship between distribution and regression fitting  2nd
Enlightening the relationship between distribution and regre...
收藏 引用
2nd IFIP TC 12 International Conference on Intelligence Science, ICIS 2017
作者: Yu, Hang Yin, Qian Guo, Ping Image Processing and Pattern Recognition Laboratory Beijing Normal University Beijing100875 China
Statistical distribution fitting and regression fitting are both classic methods to model data. There are slight connections and differences between them, as a result they outperform each other in different cases. A a... 详细信息
来源: 评论
Weighting features before applying machine learning methods to pulsar search  2nd
Weighting features before applying machine learning methods ...
收藏 引用
2nd IFIP TC 12 International Conference on Intelligence Science, ICIS 2017
作者: Wang, Dayang Yin, Qian Wang, Hongfeng Image Processing and Pattern Recognition Laboratory Beijing Normal University Beijing100875 China
In recent years, different Artificial Intelligence methods have been applied to pulsar search, such as Artificial Neural Network method, PEACE Sorting Algorithm, Real-time Classification method. In this paper, Weighti... 详细信息
来源: 评论
An improved convex programming model for the inverse problem in intensity-modulated radiation therapy
收藏 引用
International Journal of Performability Engineering 2018年 第5期14卷 871-884页
作者: Lan, Yihua Zhang, Xingang Zhang, Jianyang Wang, Yang Hung, Chih-Cheng School of Computer and Information Technology Nanyang Normal University Nanyang473061 China Institute of Image Processing and Pattern Recognition Nanyang Normal University Nanyang473061 China Radiology Department Central Hospital of Nanyang Nanyang473061 China Laboratory for Machine Vision and Security Research College of Computing and Software Engineering Kennesaw State University - Marietta Campus 1100 South Marietta Parkway MariettaGA30067-2896 United States
Intensity modulated radiation therapy technology (IMRT) is one of the main approaches in cancer treatment because it can guarantee the killing of cancer cells while optimally protecting normal tissue from complication... 详细信息
来源: 评论
REFUGE2 CHALLENGE: A TREASURE TROVE FOR MULTI-DIMENSION ANALYSIS AND EVALUATION IN GLAUCOMA SCREENING
arXiv
收藏 引用
arXiv 2022年
作者: Fang, Huihui Li, Fei Wu, Junde Fu, Huazhu Sun, Xu Son, Jaemin Yu, Shuang Zhang, Menglu Yuan, Chenglang Bian, Cheng Lei, Baiying Zhao, Benjian Xu, Xinxing Li, Shaohua Fumero, Francisco Sigut, José Almubarak, Haidar Bazi, Yakoub Guo, Yuanhao Zhou, Yating Baid, Ujjwal Innani, Shubham Guo, Tianjiao Yang, Jie Orlando, José Ignacio Bogunović, Hrvoje Zhang, Xiulan Xu, Yanwu The REFUGE2 Challenge Australia State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat-Sen University Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science Guangzhou China Intelligent Healthcare Unit Baidu Inc. Beijing China The Institute of High Performance Computing Agency for Science Technology and Research Singapore Yatiris Group PLADEMA Institute CONICET UNICEN Tandil Argentina Christian Doppler Lab for Artificial Intelligence in Retina Department of Ophthalmology and Optometry Medical University of Vienna Vienna Austria VUNO Inc Seoul Korea Republic of Tencent HealthCare Tencent Shenzhen China Computer Vision Institute College of Computer Science and Software Engineering of Shenzhen University Shenzhen China School of Biomedical Engineering Health Science Center Shenzhen University China Xiaohe Healthcare ByteDance Guangdong Guangzhou510000 China School of Biomedical Engineering Shenzhen University China College of Computer Science & Software Engineering Shenzhen University China Department of Computer Science and Systems Engineering Universidad de La Laguna Spain Saudi Electronic University Saudi Arabia King Saud University Saudi Arabia Institute of Automation Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China SGGS Institute of Engineering and Technology India Institute of Medical Robotics Shanghai Jiao Tong University China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University China
With the rapid development of artificial intelligence (AI) in medical image processing, deep learning in color fundus photography (CFP) analysis is also evolving. Although there are some open-source, labeled datasets ... 详细信息
来源: 评论
Supervised scale-regularized linear convolutionary filters  28
Supervised scale-regularized linear convolutionary filters
收藏 引用
28th British Machine Vision Conference, BMVC 2017
作者: Loog, Marco Lauze, François Pattern Recognition Laboratory Delft University of Technology Delft Netherlands Image Section University of Copenhagen Copenhagen Denmark
We start by demonstrating that an elementary learning task—learning a linear filter from training data by means of regression—can be solved very efficiently for feature spaces of very high dimensionality. In a secon... 详细信息
来源: 评论