咨询与建议

限定检索结果

文献类型

  • 467 篇 会议
  • 194 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 663 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 417 篇 工学
    • 259 篇 计算机科学与技术...
    • 223 篇 软件工程
    • 107 篇 信息与通信工程
    • 76 篇 光学工程
    • 64 篇 控制科学与工程
    • 53 篇 生物医学工程(可授...
    • 50 篇 生物工程
    • 49 篇 电子科学与技术(可...
    • 46 篇 机械工程
    • 40 篇 电气工程
    • 32 篇 化学工程与技术
    • 19 篇 仪器科学与技术
    • 18 篇 交通运输工程
    • 10 篇 材料科学与工程(可...
    • 9 篇 力学(可授工学、理...
    • 9 篇 建筑学
    • 9 篇 土木工程
    • 8 篇 航空宇航科学与技...
  • 252 篇 理学
    • 138 篇 数学
    • 97 篇 物理学
    • 59 篇 生物学
    • 50 篇 统计学(可授理学、...
    • 31 篇 化学
    • 18 篇 系统科学
  • 101 篇 管理学
    • 57 篇 图书情报与档案管...
    • 54 篇 管理科学与工程(可...
    • 10 篇 工商管理
  • 35 篇 医学
    • 30 篇 临床医学
    • 25 篇 基础医学(可授医学...
    • 19 篇 药学(可授医学、理...
  • 7 篇 经济学
  • 6 篇 艺术学
  • 5 篇 法学
  • 5 篇 农学
  • 3 篇 教育学
  • 3 篇 军事学
  • 2 篇 文学
  • 1 篇 哲学

主题

  • 50 篇 feature extracti...
  • 49 篇 pattern recognit...
  • 44 篇 image segmentati...
  • 40 篇 image processing
  • 23 篇 image analysis
  • 21 篇 support vector m...
  • 21 篇 laboratories
  • 20 篇 training
  • 19 篇 computer vision
  • 18 篇 object detection
  • 17 篇 convolution
  • 17 篇 robustness
  • 15 篇 shape
  • 15 篇 principal compon...
  • 15 篇 layout
  • 14 篇 artificial intel...
  • 14 篇 image recognitio...
  • 14 篇 image reconstruc...
  • 13 篇 face recognition
  • 13 篇 histograms

机构

  • 74 篇 image processing...
  • 35 篇 institute of ima...
  • 23 篇 fujian key labor...
  • 22 篇 school of inform...
  • 18 篇 school of comput...
  • 17 篇 key laboratory o...
  • 15 篇 fujian key labor...
  • 15 篇 institute for pa...
  • 15 篇 school of softwa...
  • 14 篇 key laboratory o...
  • 13 篇 school of comput...
  • 12 篇 hubei key labora...
  • 12 篇 hubei engineerin...
  • 11 篇 college of compu...
  • 11 篇 pattern recognit...
  • 10 篇 key laboratory o...
  • 9 篇 institute of ima...
  • 9 篇 school of electr...
  • 9 篇 laboratory of im...
  • 8 篇 key laboratory o...

作者

  • 64 篇 ping guo
  • 35 篇 yang jie
  • 27 篇 guo ping
  • 25 篇 qian yin
  • 25 篇 wang da-han
  • 23 篇 huang xiaolin
  • 19 篇 jie yang
  • 14 篇 liu jian
  • 12 篇 ding mingyue
  • 12 篇 da-han wang
  • 12 篇 zhu shunzhi
  • 12 篇 zhang tianxu
  • 12 篇 li qishen
  • 12 篇 jian liu
  • 12 篇 shen hong-bin
  • 10 篇 loog marco
  • 10 篇 he fan
  • 10 篇 qishen li
  • 9 篇 xin zheng
  • 9 篇 fang tao

语言

  • 622 篇 英文
  • 25 篇 其他
  • 16 篇 中文
检索条件"机构=Image and Pattern Recognition Laboratory"
663 条 记 录,以下是271-280 订阅
排序:
Supervised Classification: Quite a Brief Overview
arXiv
收藏 引用
arXiv 2017年
作者: Loog, Marco Pattern Recognition Laboratory Delft University of Technology Netherlands Image Section University of Copenhagen Denmark
The original problem of supervised classification considers the task of automatically assigning objects to their respective classes on the basis of numerical measurements derived from these objects. Classifiers are th... 详细信息
来源: 评论
Scale-regularized filter learning: Calculus of variation meets learning
arXiv
收藏 引用
arXiv 2017年
作者: Loog, Marco Lauze, François Pattern Recognition Laboratory Delft University of Technology Netherlands Image Section University of Copenhagen Denmark
We start out by demonstrating that an elementary learning task, corresponding to the training of a single linear neuron in a convolutional neural network, can be solved for feature spaces of very high dimensionality. ... 详细信息
来源: 评论
Learning data-adaptive nonparametric kernels
arXiv
收藏 引用
arXiv 2018年
作者: Liu, Fanghui Huang, Xiaolin Gong, Chen Yang, Jie Li, Li Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai200240 China Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information Ministry of Education School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing210094 China Department of Automation Tsinghua University
Kernel methods have been extensively used in a variety of machine learning tasks such as classification, clustering, and dimensionality reduction. For complicated practical tasks, the traditional kernels, e.g., Gaussi... 详细信息
来源: 评论
Correction to: Automatic identification of myopic maculopathy related imaging features in optic disc region via machine learning methods
收藏 引用
Journal of translational medicine 2021年 第1期19卷 203页
作者: Yuchen Du Qiuying Chen Ying Fan Jianfeng Zhu Jiangnan He Haidong Zou Dazhen Sun Bowen Xin David Feng Michael Fulham Xiuying Wang Lisheng Wang Xun Xu Department of Automation The Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University (SJTU) 800 Dongchuan RD. Minhang District Shanghai 200240 People's Republic of China. Department of Preventative Ophthalmology Shanghai Eye Diseases Prevention and Treatment Center Shanghai Eye Hospital No. 380 Kangding Road Shanghai 200040 China. Department of Ophthalmology Shanghai Key Laboratory of Ocular Fundus Diseases Shanghai Engineering Center for Visual Science and Photo Medicine Shanghai General Hospital SJTU School of Medicine Shanghai China. National Clinical Research Center for Eye Diseases Shanghai 20080 China. Biomedical and Multimedia Information Technology Research Group School of Computer Science The University of Sydney Sydney NSW 2006 Australia. Department of Molecular Imaging Royal Prince Alfred Hospital and the University of Sydney Sydney Australia. Department of Automation The Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University (SJTU) 800 Dongchuan RD. Minhang District Shanghai 200240 People's Republic of China. lswang@***. Department of Preventative Ophthalmology Shanghai Eye Diseases Prevention and Treatment Center Shanghai Eye Hospital No. 380 Kangding Road Shanghai 200040 China. drxuxun@***. Department of Ophthalmology Shanghai Key Laboratory of Ocular Fundus Diseases Shanghai Engineering Center for Visual Science and Photo Medicine Shanghai General Hospital SJTU School of Medicine Shanghai China. drxuxun@***. National Clinical Research Center for Eye Diseases Shanghai 20080 China. drxuxun@***.
An amendment to this paper has been published and can be accessed via the original article.
来源: 评论
Fast signal recovery from saturated measurements by linear loss and nonconvex penalties
arXiv
收藏 引用
arXiv 2018年
作者: He, Fan Huang, Xiaolin Liu, Yipeng Yan, Ming Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University The MOE Key Laboratory of System Control and Information Processing Shanghai200240 China School of Information and Communication Engineering University of Electronic Science and Technology of China Chengdu611731 China The Department of Computational Mathematics Science and Engineering Michigan State University MI United States
Sign information is the key to overcoming the inevitable saturation error in compressive sensing systems, which causes information loss and results in bias. For sparse signal recovery from saturation, we propose to us... 详细信息
来源: 评论
Generalization Properties of hyper-RKHS and its Applications
arXiv
收藏 引用
arXiv 2018年
作者: Liu, Fanghui Shi, Lei Huang, Xiaolin Yang, Jie Suykens, Johan A.K. Department of Electrical Engineering ESAT-STADIUS KU Leuven Kasteelpark Arenberg 10 LeuvenB-3001 Belgium Shanghai Key Laboratory for Contemporary Applied Mathematics School of Mathematical Sciences Fudan University Shanghai200433 China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Institute of Medical Robotics Shanghai Jiao Tong University Shanghai200240 China
This paper generalizes regularized regression problems in a hyper-reproducing kernel Hilbert space (hyper-RKHS), illustrates its utility for kernel learning and out-of-sample extensions, and proves asymptotic converge... 详细信息
来源: 评论
3D RoI-aware U-net for accurate and efficient colorectal tumor segmentation
arXiv
收藏 引用
arXiv 2018年
作者: Huang, Yi-Jie Dou, Qi Wang, Zi-Xian Liu, Li-Zhi Jin, Ying Li, Chao-Feng Wang, Lisheng Chen, Hao Xu, Rui-Hua Institute of Image Processing and Pattern Recognition Department of Automation Shanghai Jiao Tong University China Imsight Medical Technology Co. Ltd. China Department of Computer Science and Engineering The Chinese University of Hong Kong Hong Kong Sun Yat-sen University Cancer Center State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Guangzhou China
Segmentation of colorectal cancerous regions from 3D Magnetic Resonance (MR) images is a crucial procedure for radiotherapy which conventionally requires accurate delineation of tumour boundaries at an expense of labo... 详细信息
来源: 评论
Edgy salient local binary patterns in inter-plane relationship for image retrieval in Diabetic Retinopathy
收藏 引用
Procedia Computer Science 2017年 115卷 440-447页
作者: Gajanan M. Galshetwar Laxman M. Waghmare Anil B. Gonde Subrahmanyam Murala Center of Excellence in Signal and Image Processing (COESIP) Department of ECE SGGSIET Nanded Maharashtra 431606 India Computer Vision and Pattern Recognition Laboratory Department of Electrical Engineering IIT Ropar Rupnagar 140001 India
In this paper, a novel approach for content based image retrieval (CBIR) in diabetic retinopathy (DR) is proposed. The concept of salient point selection and inter-plane relationship technique is used. Salient points ... 详细信息
来源: 评论
Label stability in multiple instance learning
arXiv
收藏 引用
arXiv 2017年
作者: Cheplygina, Veronika Sørensen, Lauge Tax, David M.J. de Bruijne, Marleen Loog, Marco Pattern Recognition Laboratory Delft University of Technology Netherlands Image Section University of Copenhagen Copenhagen Denmark Biomedical Imaging Group Rotterdam Erasmus MC Rotterdam Netherlands
We address the problem of instance label stability in multiple instance learning (MIL) classifiers. These classifiers are trained only on globally annotated images (bags), but often can provide fine-grained annotation... 详细信息
来源: 评论
Target contrastive pessimistic risk for robust domain adaptation
arXiv
收藏 引用
arXiv 2017年
作者: Kouw, Wouter M. Loog, Marco Pattern Recognition Laboratory Delft University of Technology Mekelweg 4 Delft2628 CD Netherlands Image Group University of Copenhagen Universitetsparken 5 CopenhagenDK-2100 Denmark
In domain adaptation, classifiers with information from a source domain adapt to generalize to a target domain. However, an adaptive classifier can perform worse than a non-adaptive classifier due to invalid assumptio... 详细信息
来源: 评论