咨询与建议

限定检索结果

文献类型

  • 467 篇 会议
  • 194 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 663 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 417 篇 工学
    • 259 篇 计算机科学与技术...
    • 223 篇 软件工程
    • 107 篇 信息与通信工程
    • 76 篇 光学工程
    • 64 篇 控制科学与工程
    • 53 篇 生物医学工程(可授...
    • 50 篇 生物工程
    • 49 篇 电子科学与技术(可...
    • 46 篇 机械工程
    • 40 篇 电气工程
    • 32 篇 化学工程与技术
    • 19 篇 仪器科学与技术
    • 18 篇 交通运输工程
    • 10 篇 材料科学与工程(可...
    • 9 篇 力学(可授工学、理...
    • 9 篇 建筑学
    • 9 篇 土木工程
    • 8 篇 航空宇航科学与技...
  • 252 篇 理学
    • 138 篇 数学
    • 97 篇 物理学
    • 59 篇 生物学
    • 50 篇 统计学(可授理学、...
    • 31 篇 化学
    • 18 篇 系统科学
  • 101 篇 管理学
    • 57 篇 图书情报与档案管...
    • 54 篇 管理科学与工程(可...
    • 10 篇 工商管理
  • 35 篇 医学
    • 30 篇 临床医学
    • 25 篇 基础医学(可授医学...
    • 19 篇 药学(可授医学、理...
  • 7 篇 经济学
  • 6 篇 艺术学
  • 5 篇 法学
  • 5 篇 农学
  • 3 篇 教育学
  • 3 篇 军事学
  • 2 篇 文学
  • 1 篇 哲学

主题

  • 50 篇 feature extracti...
  • 49 篇 pattern recognit...
  • 44 篇 image segmentati...
  • 40 篇 image processing
  • 23 篇 image analysis
  • 21 篇 support vector m...
  • 21 篇 laboratories
  • 20 篇 training
  • 19 篇 computer vision
  • 18 篇 object detection
  • 17 篇 convolution
  • 17 篇 robustness
  • 15 篇 shape
  • 15 篇 principal compon...
  • 15 篇 layout
  • 14 篇 artificial intel...
  • 14 篇 image recognitio...
  • 14 篇 image reconstruc...
  • 13 篇 face recognition
  • 13 篇 histograms

机构

  • 74 篇 image processing...
  • 35 篇 institute of ima...
  • 23 篇 fujian key labor...
  • 22 篇 school of inform...
  • 18 篇 school of comput...
  • 17 篇 key laboratory o...
  • 15 篇 fujian key labor...
  • 15 篇 institute for pa...
  • 15 篇 school of softwa...
  • 14 篇 key laboratory o...
  • 13 篇 school of comput...
  • 12 篇 hubei key labora...
  • 12 篇 hubei engineerin...
  • 11 篇 college of compu...
  • 11 篇 pattern recognit...
  • 10 篇 key laboratory o...
  • 9 篇 institute of ima...
  • 9 篇 school of electr...
  • 9 篇 laboratory of im...
  • 8 篇 key laboratory o...

作者

  • 64 篇 ping guo
  • 35 篇 yang jie
  • 27 篇 guo ping
  • 25 篇 qian yin
  • 25 篇 wang da-han
  • 23 篇 huang xiaolin
  • 19 篇 jie yang
  • 14 篇 liu jian
  • 12 篇 ding mingyue
  • 12 篇 da-han wang
  • 12 篇 zhu shunzhi
  • 12 篇 zhang tianxu
  • 12 篇 li qishen
  • 12 篇 jian liu
  • 12 篇 shen hong-bin
  • 10 篇 loog marco
  • 10 篇 he fan
  • 10 篇 qishen li
  • 9 篇 xin zheng
  • 9 篇 fang tao

语言

  • 622 篇 英文
  • 25 篇 其他
  • 16 篇 中文
检索条件"机构=Image and Pattern Recognition Laboratory"
663 条 记 录,以下是281-290 订阅
排序:
Active learning using uncertainty information
arXiv
收藏 引用
arXiv 2017年
作者: Yang, Yazhou Yang, Yazhou Loog, Marco Loog, Marco Pattern Recognition Laboratory Delft University of Technology Delft Netherlands College of Information System and Management National University of Defense Technology Changsha China Image Section University of Copenhagen Copenhagen Denmark
Many active learning methods belong to the retraining-based approaches, which select one unlabeled instance, add it to the training set with its possible labels, retrain the classification model, and evaluate the crit... 详细信息
来源: 评论
An Effective Method for Modeling Two-dimensional Sky Background of LAMOST
收藏 引用
Proceedings of the International Astronomical Union 2017年 第S325期12卷 63-66页
作者: Hasitieer Haerken Fuqing Duan Jiannan Zhang Ping Guo Image Processing and Pattern Recognition Laboratory Beijing Normal University 100875 Beijing China email: fqduan@bnu.edu.cnpguo@*** National Astronomical Observatories & Chinese Academy of Sciences 100012 Beijing China email: hastear@***jnzhang@***
Each CCD of LAMOST accommodates 250 spectra, while about 40 are used to observe sky background during real observations. How to estimate the unknown sky background information hidden in the observed 210 celestial spec... 详细信息
来源: 评论
On Measuring and Quantifying Performance: Error Rates, Surrogate Loss, and an Example in SSL
arXiv
收藏 引用
arXiv 2017年
作者: Loog, Marco Krijthe, Jesse Jensen, Are C. Department of Molecular Epidemiology Leiden University Medical Center Netherlands Pattern Recognition Laboratory Delft University of Technology Netherlands Image Section University of Copenhagen Denmark Department of Informatics University of Oslo Norway
In various approaches to learning, notably in domain adaptation, active learning, learning under covariate shift, semi-supervised learning, learning with concept drift, and the like, one often wants to compare a basel... 详细信息
来源: 评论
Fast KNN search for big data with set compression tree and best bin first  2
Fast KNN search for big data with set compression tree and b...
收藏 引用
2nd International Conference on Cloud Computing and Internet of Things, CCIOT 2016
作者: Chen, Zhenjie Yan, Jingqi Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Key Laboratory of Ministry of Education for System Control and Information Processing China Shanghai China
This paper proposes k nearest neighbors (kNN) search based on set compression tree (SCT) and best bin first (BBF) to deal with the problem for big data. The large compression rate by set compression tree is achieved b... 详细信息
来源: 评论
Varifocal-Net: A Chromosome Classification Approach Using Deep Convolutional Networks
arXiv
收藏 引用
arXiv 2018年
作者: Qin, Yulei Wen, Juan Zheng, Hao Huang, Xiaolin Yang, Jie Song, Ning Zhu, Yue-Min Wu, Lingqian Yang, Guang-Zhong Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai200240 China Center for Medical Genetics School of Life Sciences Central South University Changsha410078 China Shanghai Key Laboratory of Reproductive Medicine School of Medicine Shanghai Jiao Tong University Shanghai200025 China Diagens-Hangzhou Hangzhou311121 China University Lyon INSA Lyon CNRS INSERM CREATIS UMR 5220 U1206F-69621 France Hamlyn Centre for Robotic Surgery Imperial College London SW72AZ United Kingdom
Chromosome classification is critical for karyotyping in abnormality diagnosis. To expedite the diagnosis, we present a novel method named Varifocal-Net for simultaneous classification of chromosomes type and polarity... 详细信息
来源: 评论
image Stitching with single-hidden layer feedforward Neural Networks
Image Stitching with single-hidden layer feedforward Neural ...
收藏 引用
International Joint Conference on Neural Networks
作者: Min Yan Qian Yin Ping Guo Image Processing and Pattern Recognition Laboratory Beijing Normal University
In this paper, a novel image stitching method is proposed, which utilizes scale-invariant feature transform (SIFT) feature and single-hidden layer feedforward neural network (SLFN) to get higher precision of parameter... 详细信息
来源: 评论
Kernel Selection with Evolutionary Algorithm for Multiple Kernel Independent Component Analysis
Kernel Selection with Evolutionary Algorithm for Multiple Ke...
收藏 引用
International Joint Conference on Neural Networks
作者: Peng Wu Qian Yin Ping Guo Image Processing and Pattern Recognition Laboratory Beijing Normal University
Kernel independent component analysis (KICA) has an important application in blind source separation, in which how to select the optimal kernel, including the kernel functional form and its parameters, is the key issu... 详细信息
来源: 评论
Study of point spread function of astronomical object imaging
收藏 引用
International Conference on Information Science and Applications, ICISA 2016
作者: Yu, Jian Yin, Qian Guo, Ping College of Computer and Information Engineering Hanshan Normal University ChaozhouGuangdong521041 China Image Processing and Pattern Recognition Laboratory Beijing Normal University Beijing100875 China
The research of point spread function (PSF) of astronomical object imaging is very important to the astronomical image restoration. In this paper, the simulated atmospheric turbulent phase screen, the short exposure P... 详细信息
来源: 评论
Classification of COPD with Multiple Instance Learning
arXiv
收藏 引用
arXiv 2017年
作者: Cheplygina, Veronika Sørensen, Lauge Tax, David M.J. Pedersen, Jesper Holst Loog, Marco de Bruijne, Marleen Pattern Recognition Laboratory Delft University of Technology Delft Netherlands Image Group Department of Computer Science University of Copenhagen Copenhagen Denmark Department of Thoracic Surgery Rigshospitalet University of Copenhagen Copenhagen Denmark Biomedical Imaging Group Rotterdam Erasmus MC Rotterdam Netherlands
来源: 评论
Nonconvex penalties with analytical solutions for one-bit compressive sensing
arXiv
收藏 引用
arXiv 2017年
作者: Huang, Xiaolin Yan, Ming Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University MOE Key Laboratory of System Control and Information Processing Shanghai200240 China Department of Computational Mathematics Science and Engineering Department of Mathematics Michigan State University East LansingMI48824 United States
One-bit measurements widely exist in the real world and can be used to recover sparse signals. This task is known as one-bit compressive sensing (1bit-CS). In this paper, we propose novel algorithms based on both conv... 详细信息
来源: 评论