咨询与建议

限定检索结果

文献类型

  • 467 篇 会议
  • 194 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 663 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 417 篇 工学
    • 259 篇 计算机科学与技术...
    • 223 篇 软件工程
    • 107 篇 信息与通信工程
    • 76 篇 光学工程
    • 64 篇 控制科学与工程
    • 53 篇 生物医学工程(可授...
    • 50 篇 生物工程
    • 49 篇 电子科学与技术(可...
    • 46 篇 机械工程
    • 40 篇 电气工程
    • 32 篇 化学工程与技术
    • 19 篇 仪器科学与技术
    • 18 篇 交通运输工程
    • 10 篇 材料科学与工程(可...
    • 9 篇 力学(可授工学、理...
    • 9 篇 建筑学
    • 9 篇 土木工程
    • 8 篇 航空宇航科学与技...
  • 252 篇 理学
    • 138 篇 数学
    • 97 篇 物理学
    • 59 篇 生物学
    • 50 篇 统计学(可授理学、...
    • 31 篇 化学
    • 18 篇 系统科学
  • 101 篇 管理学
    • 57 篇 图书情报与档案管...
    • 54 篇 管理科学与工程(可...
    • 10 篇 工商管理
  • 35 篇 医学
    • 30 篇 临床医学
    • 25 篇 基础医学(可授医学...
    • 19 篇 药学(可授医学、理...
  • 7 篇 经济学
  • 6 篇 艺术学
  • 5 篇 法学
  • 5 篇 农学
  • 3 篇 教育学
  • 3 篇 军事学
  • 2 篇 文学
  • 1 篇 哲学

主题

  • 50 篇 feature extracti...
  • 49 篇 pattern recognit...
  • 44 篇 image segmentati...
  • 40 篇 image processing
  • 23 篇 image analysis
  • 21 篇 support vector m...
  • 21 篇 laboratories
  • 20 篇 training
  • 19 篇 computer vision
  • 18 篇 object detection
  • 17 篇 convolution
  • 17 篇 robustness
  • 15 篇 shape
  • 15 篇 principal compon...
  • 15 篇 layout
  • 14 篇 artificial intel...
  • 14 篇 image recognitio...
  • 14 篇 image reconstruc...
  • 13 篇 face recognition
  • 13 篇 histograms

机构

  • 74 篇 image processing...
  • 35 篇 institute of ima...
  • 23 篇 fujian key labor...
  • 22 篇 school of inform...
  • 18 篇 school of comput...
  • 17 篇 key laboratory o...
  • 15 篇 fujian key labor...
  • 15 篇 institute for pa...
  • 15 篇 school of softwa...
  • 14 篇 key laboratory o...
  • 13 篇 school of comput...
  • 12 篇 hubei key labora...
  • 12 篇 hubei engineerin...
  • 11 篇 college of compu...
  • 11 篇 pattern recognit...
  • 10 篇 key laboratory o...
  • 9 篇 institute of ima...
  • 9 篇 school of electr...
  • 9 篇 laboratory of im...
  • 8 篇 key laboratory o...

作者

  • 64 篇 ping guo
  • 35 篇 yang jie
  • 27 篇 guo ping
  • 25 篇 qian yin
  • 25 篇 wang da-han
  • 23 篇 huang xiaolin
  • 19 篇 jie yang
  • 14 篇 liu jian
  • 12 篇 ding mingyue
  • 12 篇 da-han wang
  • 12 篇 zhu shunzhi
  • 12 篇 zhang tianxu
  • 12 篇 li qishen
  • 12 篇 jian liu
  • 12 篇 shen hong-bin
  • 10 篇 loog marco
  • 10 篇 he fan
  • 10 篇 qishen li
  • 9 篇 xin zheng
  • 9 篇 fang tao

语言

  • 622 篇 英文
  • 25 篇 其他
  • 16 篇 中文
检索条件"机构=Image and Pattern Recognition Laboratory"
663 条 记 录,以下是621-630 订阅
排序:
Gravel image Segmentation in Noisy Background Based on Partial Entropy Method
收藏 引用
中国地质大学学报(英文版) 2000年 第1期11卷 92-94页
作者: Wang Guangjun Tian Jinwen Chen Zhenyu Liu Jian Wu Guoping State Key Laboratory for Image Processing and Intelligent Control Institute for Pattern Recognition and Artificial Intelligence Huazhong University of Science and Technology WuHan 430074 Faculty of Information Engineering China University of Geosciences Wuhan 430074
Because of wide variation in gray levels and particle dimensions and the presence of many small gravel objects in the background, as well as corrupting the image by noise, it is difficult o segment gravel objects. In ... 详细信息
来源: 评论
A new approach to finite wordlength coefficient fir digital filter design using the branch and bound technique  10
A new approach to finite wordlength coefficient fir digital ...
收藏 引用
2000 10th European Signal Processing Conference, EUSIPCO 2000
作者: Belbachir, A.N. Boulerial, B. Belbachir, M.F. Signal and System Laboratory Electronic Institute U.S.T.O. B.P. 1505 El Mnouer Oran Algeria Vienna University of Technology Pattern Recognition and Image Processing Group Favritenstr. 9/1832 ViennaA-1040 Austria
It has been shown that the branch and bound technique is effective for the design of finite wordlength optimal digital filters. This technique is however expensive in computing time. In this paper, we present a robust... 详细信息
来源: 评论
Application of a genetic algorithm in triangulation of a 3-D object surface
收藏 引用
International Journal of Computers and Applications 2000年 第2期22卷 73-77页
作者: Zhenyu, Chen Mbede, J.B. Yan, Zhou Dehua, Li Hanping, Hu State Commn. Res. Open Lab. Image P. Inst. Pattern Recog. Artif. Intell. Huazhong Univ. of Sci. and Technol. 430074 Wuhan China Intelligent Contr. and Robotics Lab. Dept. of Contr. Sci. and Engineering Huazhong Univ. of Sci. and Technol. 430074 Wuhan China Second Artillery Institute Huazhong Univ. of Sci. and Technol. Inst. Pattern Recog. Artif. Intell. Huazhong Univ. of Sci. and Technol. Second Artillery Institute China Wuhan University China Artificial Intelligence Department University of Edinburgh Inst. of AI and Pattern Recognition Huazhong Univ. of Sci. and Technol. China Cogn. Sci. Natl. Key Found. Res. P. Douala University Cameroon Tübingen University Germany Automatic Control Laboratory Darmstadt University Department of Service Cameroon Min. of National Education Robotics Laboratory Huazhong Univ. of Sci. and Technol. Wuhan China Assoc. Connectionnistes These-ACTH Rennes France IEEE Soc. of Robotics and Automation IEEE Society of Control Systems IASTED Assoc. Jeunes Chercheurs Robotique France Navy University of Engineering China Huazhong Univ. of Sci. and Technol. China Department of Computer Science Airforce Radar Acad. of Engineering China Inst. of P.R and AI Huazhong Univ. of Sci. and Technol.
This paper proposes a genetic-based algorithm for surface reconstruction of three-dimension (3-D) objects from a group of contours representing its section plane lines. The algorithm can optimize the triangulation of ... 详细信息
来源: 评论
ADAPTIVE MULTISCALE EDGE DETECTION BASED ON VISION FEATURE OF EDGE AND WAVELET TRANSFORM
收藏 引用
Journal of Electronics(China) 1999年 第2期16卷 104-108页
作者: Yang Xuan Liang Dequn (laboratory of image Process and pattern recognition, Xi’an Jiaotong University, Xi’an 710049) Laboratory of Image Process and Pattern Recognition Xi’an Jiaotong University Xi’an
A new rnultiscale edge detection method is presented, which is based on an effective edge measure. The effective edge measure, used to adaptively adjust the scales of wavelet transform, is defined using the novel feat... 详细信息
来源: 评论
Texture Segmentation Based on image Model and Neural Network
收藏 引用
Journal of Earth Science 1999年 第4期18卷 333-335页
作者: Chen Zhenyu Sheng Wen Wang Guangjun Li Dehua(State Education Commission laboratory for image Processing and Intelligence Control, Institute for pattern recognition and Artificial Intelligence, Huazhong University of Science and Technology, Wu han 430074) State Education Commission Laboratory for Image Processing and Intelligence Control Institute for Pattern Recognition and Artificial IntelligenceHuazhong University of Science and TechnologyWuhan 430074
This paper presents a texture segmentation approach which is based on the Markov random field model (MRF) and feed forward neural *** texture is modeled by the second order Gauss MRF model, and the least square error ... 详细信息
来源: 评论
Impulse noise removal using linear prediction model
Impulse noise removal using linear prediction model
收藏 引用
4th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services, ITELSIKS 1999
作者: Prudyus, Ivan Voloshynovskiy, Sviatoslav Rytsar, Yuriy Holotyak, Taras Radio Engineering Faculty State University Lvivska Polytechnika 12 S.Bandery Str. Lviv 290646 Ukraine Coordinated Science Laboratory University of Illinois College of Engineering 1308 West Main Street Urbana IL 61801-2307 United States Department of Image Processing and Pattern Recognition Institute of Physics and Mechanics National Academy of Science of Ukraine 5 Naukova str. Lviv Ukraine
Noise removal is an important problem in many applications. In this paper a new two-step scheme of the decision-based impulse noise removal method by means of contaminated pixel detection is proposed and comparison wi... 详细信息
来源: 评论
Impulse noise removal using linear prediction model
Impulse noise removal using linear prediction model
收藏 引用
International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Service (TELSIKS)
作者: I. Prudyus S. Voloshynovskiy Y. Rytsar T. Holotyak National University Lvivska Politechnika Lviv Ukraine Coordinated Science Laboratory College of Engineering University of Illinois Urbana IL USA Department of Image Processing and Pattern Recognition Institute of Physics and Mechanics National Academy of Sciences Lviv Ukraine
Noise removal is an important problem in many applications. In this paper a new two-step scheme of the decision-based impulse noise removal method by means of contaminated pixel detection is proposed and comparison wi... 详细信息
来源: 评论
Edge Detection Using image Feature Detector
Edge Detection Using Image Feature Detector
收藏 引用
1998 Fourth International Conference Signal Processing
作者: Yang Xuan Liang Dequn Yang Haijun Laboratory of Image Processing and Pattern Recognition Xi'an Jiaotong University
A new edge detection operator based on image feature is proposed,which analyze edges in image for edge feature in two *** local extreme of the operator is created at the edge location and low value is created at the s... 详细信息
来源: 评论
Edge detection using image feature detector
Edge detection using image feature detector
收藏 引用
International Conference on Signal Processing Proceedings (ICSP)
作者: Yang Xuan Liang Dequn Yang Haijun Laboratory of Image Processing and Pattern Recognition Xi'an Jiaotong University Xi'an China
A new edge detection operator based on image features is proposed, which analyzes edges in images for edge features in two dimensions. The local extreme of the operator is created at the edge location and a low value ... 详细信息
来源: 评论
Minimizing the topological structure of line images  7th
收藏 引用
7th Joint IAPR International Workshop on Structural and Syntactic pattern recognition, SSPR 1998 and 2nd International Workshop on Statistical Techniques in pattern recognition, SPR 1998
作者: Kropatsch, Walter G. Burge, Mark Vienna University of Technology Institute of Automation 183/2 Pattern Recognition and Image Processing Group Treitlstr.3 WienA-1040 Austria Johannes Kepler University Institute of Systems Science Computer Vision Laboratory LinzA-4040 Austria
We present a new algorithm based on Dual Graph Contraction (DGC) to transform the Run Graph into its Minimum Line Property Preserving (MLPP) form which, when implemented in parallel, requires O(log(longestcurve)) step... 详细信息
来源: 评论