咨询与建议

限定检索结果

文献类型

  • 321 篇 会议
  • 108 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 433 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 200 篇 工学
    • 116 篇 计算机科学与技术...
    • 103 篇 软件工程
    • 89 篇 生物医学工程(可授...
    • 78 篇 光学工程
    • 54 篇 电气工程
    • 47 篇 电子科学与技术(可...
    • 46 篇 生物工程
    • 42 篇 信息与通信工程
    • 19 篇 控制科学与工程
    • 17 篇 仪器科学与技术
    • 16 篇 机械工程
    • 7 篇 化学工程与技术
    • 5 篇 材料科学与工程(可...
    • 5 篇 安全科学与工程
    • 4 篇 土木工程
    • 3 篇 建筑学
  • 135 篇 理学
    • 63 篇 物理学
    • 57 篇 数学
    • 50 篇 生物学
    • 21 篇 统计学(可授理学、...
    • 9 篇 系统科学
    • 8 篇 化学
  • 51 篇 医学
    • 49 篇 基础医学(可授医学...
    • 47 篇 临床医学
    • 36 篇 药学(可授医学、理...
    • 8 篇 公共卫生与预防医...
  • 45 篇 管理学
    • 23 篇 图书情报与档案管...
    • 22 篇 管理科学与工程(可...
    • 5 篇 工商管理
  • 11 篇 教育学
    • 10 篇 教育学
  • 3 篇 农学
  • 3 篇 艺术学
  • 1 篇 法学

主题

  • 51 篇 image segmentati...
  • 45 篇 image analysis
  • 43 篇 laboratories
  • 34 篇 magnetic resonan...
  • 29 篇 image coding
  • 27 篇 feature extracti...
  • 27 篇 humans
  • 25 篇 biomedical imagi...
  • 22 篇 clustering algor...
  • 20 篇 computer vision
  • 20 篇 shape
  • 17 篇 image processing
  • 17 篇 video compressio...
  • 16 篇 testing
  • 16 篇 image reconstruc...
  • 15 篇 data mining
  • 14 篇 algorithm design...
  • 13 篇 pixel
  • 13 篇 neural networks
  • 13 篇 computational mo...

机构

  • 22 篇 laboratory for i...
  • 19 篇 control and inte...
  • 11 篇 video and image ...
  • 10 篇 image analysis a...
  • 9 篇 microscopic imag...
  • 9 篇 radiology image ...
  • 8 篇 image analysis l...
  • 8 篇 department of el...
  • 8 篇 computer vision ...
  • 8 篇 institute of med...
  • 8 篇 department of el...
  • 7 篇 department of qu...
  • 6 篇 image and video ...
  • 6 篇 control and inte...
  • 6 篇 heidelberg
  • 5 篇 image analysis l...
  • 5 篇 school of contro...
  • 5 篇 image analysis a...
  • 5 篇 image and video ...
  • 5 篇 control and inte...

作者

  • 30 篇 hamid soltanian-...
  • 27 篇 soltanian-zadeh ...
  • 23 篇 a.c. bovik
  • 15 篇 s. mitra
  • 14 篇 li chen
  • 14 篇 yao yudong
  • 13 篇 edward j. delp
  • 13 篇 h. soltanian-zad...
  • 10 篇 grzegorzek marci...
  • 10 篇 rahaman md mamun...
  • 10 篇 yong man ro
  • 9 篇 j. goutsias
  • 9 篇 kofler florian
  • 9 篇 e.j. delp
  • 9 篇 konstantinos n. ...
  • 8 篇 bakas spyridon
  • 8 篇 jiang tao
  • 8 篇 s.t. acton
  • 8 篇 jae young choi
  • 8 篇 paul salama

语言

  • 421 篇 英文
  • 11 篇 其他
  • 1 篇 中文
检索条件"机构=Image and Video Analysis Department of Electrical and Computer Engineering"
433 条 记 录,以下是101-110 订阅
排序:
Is the winner really the best? A critical analysis of common research practice in biomedical image analysis competitions
arXiv
收藏 引用
arXiv 2018年
作者: Maier-Hein, Lena Eisenmann, Matthias Reinke, Annika Onogur, Sinan Stankovic, Marko Scholz, Patrick Arbel, Tal Bogunovic, Hrvoje Bradley, Andrew P. Carass, Aaron Carolin Feldmann Frangi, Alejandro F. Ful, Peter M. van Ginneken, Bram Hanbury, Allan Honauer, Katrin Kozubek, Michal Landman, Bennett A. Marz, Keno Maier, Oskar Maier-Hein, Klaus Menze, Bjoern H. Müller, Henning Neher, Peter F. Niessen, Wiro Rajpoot, Nasir Sharp, Gregory C. Sirinukunwattana, Korsuk Speidel, Stefanie Stock, Christian Stoyanov, Danail Taha, Abdel Aziz van der Sommen, Fons Wang, Ching-Wei Weber, Marc-André Zheng, Guoyan Jannin, Pierre Kopp-Schneider, Annette Heidelberg Germany Centre for Intelligent Machines McGill University MontrealQC Canada Christian Doppler Laboratory for Ophthalmic Image Analysis Department of Ophthalmology Medical University Vienna Vienna Austria Science and Engineering Faculty Queensland University of Technology BrisbaneQLD Australia Department of Electrical and Computer Engineering Department of Computer Science Johns Hopkins University Baltimore United States CISTIB Centre for Computational Imaging and Simulation Technologies in Biomedicine University of Sheffield Sheffield United Kingdom Department of Radiology and Nuclear Medicine Medical Image Analysis Radboud University Center Nijmegen Netherlands Institute of Information Systems Engineering TU Wien Vienna Austria Heidelberg University Heidelberg Germany Centre for Biomedical Image Analysis Masaryk University Brno Czech Republic Electrical Engineering Vanderbilt University NashvilleTN United States Institute of Medical Informatics Universität zu Lübeck Lübeck Germany Heidelberg Germany Institute for Advanced Studies Department of Informatics Technical University of Munich Munich Germany Information System Institute HES-SO Sierre Switzerland Departments of Radiology Nuclear Medicine and Medical Informatics Erasmus MC Rotterdam Netherlands Department of Computer Science University of Warwick Coventry United Kingdom Department of Radiation Oncology Massachusetts General Hospital BostonMA United States Institute of Biomedical Engineering University of Oxford Oxford United Kingdom National Center for Tumor Diseases Dresden Dresden Germany Heidelberg Germany Department of Computer Science University College London London United Kingdom Data Science Studio Research Studios Austria FG Vienna Austria Department of Electrical Engineering Eindhoven University of Technology Eindhoven Netherlands AIExplore NTUST Center of Computer Vision and Medical Imaging Graduate Institute of Biomedical Engineering National Ta
International challenges have become the standard for validation of biomedical image analysis methods. Given their scientific impact, it is surprising that a critical analysis of common practices related to the organi... 详细信息
来源: 评论
The Liver Tumor Segmentation Benchmark (LiTS)
arXiv
收藏 引用
arXiv 2019年
作者: Bilic, Patrick Christ, Patrick Li, Hongwei Bran Vorontsov, Eugene Ben-Cohen, Avi Kaissis, Georgios Szeskin, Adi Jacobs, Colin Mamani, Gabriel Efrain Humpire Chartrand, Gabriel Lohöfer, Fabian Holch, Julian Walter Sommer, Wieland Hofmann, Felix Hostettler, Alexandre Lev-Cohain, Naama Drozdzal, Michal Amitai, Michal Marianne Vivanti, Refael Sosna, Jacob Ezhov, Ivan Sekuboyina, Anjany Navarro, Fernando Kofler, Florian Paetzold, Johannes C. Shit, Suprosanna Hu, Xiaobin Lipková, Jana Rempfler, Markus Piraud, Marie Kirschke, Jan Wiestler, Benedikt Zhang, Zhiheng Hülsemeyer, Christian Beetz, Marcel Ettlinger, Florian Antonelli, Michela Bae, Woong Bellver, Míriam Bi, Lei Chen, Hao Chlebus, Grzegorz Dam, Erik B. Dou, Qi Fu, Chi-Wing Georgescu, Bogdan Giró-I-Nieto, Xavier Gruen, Felix Han, Xu Heng, Pheng-Ann Hesser, Jürgen Moltz, Jan Hendrik Igel, Christian Isensee, Fabian Jäger, Paul Jia, Fucang Kaluva, Krishna Chaitanya Khened, Mahendra Kim, Ildoo Kim, Jae-Hun Kim, Sungwoong Kohl, Simon Konopczynski, Tomasz Kori, Avinash Krishnamurthi, Ganapathy Li, Fan Li, Hongchao Li, Junbo Li, Xiaomeng Lowengrub, John Ma, Jun Maier-Hein, Klaus Maninis, Kevis-Kokitsi Meine, Hans Merhof, Dorit Pai, Akshay Perslev, Mathias Petersen, Jens Pont-Tuset, Jordi Qi, Jin Qi, Xiaojuan Rippel, Oliver Roth, Karsten Sarasua, Ignacio Schenk, Andrea Shen, Zengming Torres, Jordi Wachinger, Christian Wang, Chunliang Weninger, Leon Wu, Jianrong Xu, Daguang Yang, Xiaoping Yu, Simon Chun-Ho Yuan, Yading Yue, Miao Zhang, Liping Cardoso, Jorge Bakas, Spyridon Braren, Rickmer Heinemann, Volker Pal, Christopher Tang, An Kadoury, Samuel Soler, Luc van Ginneken, Bram Greenspan, Hayit Joskowicz, Leo Menze, Bjoern Department of Informatics Technical University of Munich Germany Department of Quantitative Biomedicine University of Zurich Switzerland Ecole Polytechnique de Montréal Canada Department of Medical Imaging Radboud University Medical Center Nijmegen Netherlands Department of Biomedical Engineering Tel-Aviv University Israel Germany Pattern Analysis and Learning Group Department of Radiation Oncology Heidelberg University Hospital Heidelberg Germany Philips Research China Philips China Innovation Campus Shanghai China School of Biomedical Engineering & Imaging Sciences King0s College London London United Kingdom Institute for AI in Medicine Technical University of Munich Germany Department of Computer Science Guangdong University of Foreign Studies China Institute for diagnostic and interventional radiology Klinikum rechts der Isar Technical University of Munich Germany Institute for Diagnostic and Interventional Neuroradiology Klinikum Rechts der Isar Technical University of Munich Germany Department of Hepatobiliary Surgery The Affiliated Drum Tower Hospital Nanjing University Medical School China Department of Computing Imperial College London London United Kingdom Institute for Tissue Engineering and Regenerative Medicine Helmholtz Zentrum München Neuherberg Germany Brigham and Women's Hospital Harvard Medical School United States School of Computer Science and Engineering The Hebrew University of Jerusalem Israel University of Pennsylvania PA United States Pte. Ltd. Singapore Medical Imaging and Reconstruction Lab Department of Engineering Design Indian Institute of Technology Madras India Sensetime Shanghai China Department of Radiology Perelman School of Medicine University of Pennsylvania United States Department of Pathology and Laboratory Medicine Perelman School of Medicine University of Pennsylvania PA United States Co. Ltd China MontréalQC Canada Department of Radiology Radiation Oncology and Nuclear Medicine University of Montréal
In this work, we report the set-up and results of the Liver Tumor Segmentation Benchmark (LiTS), which was organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI) 2017 and the Inter... 详细信息
来源: 评论
UGrAD: A GRAPH-THEORETIC FRAMEWORK FOR CLASSIFICATION OF ACTIVITY WITH COMPLEMENTARY GRAPH BOUNDARY DETECTION
UGrAD: A GRAPH-THEORETIC FRAMEWORK FOR CLASSIFICATION OF ACT...
收藏 引用
IEEE International Conference on image Processing
作者: Tamal Batabyal Scott T. Acton Andrea Vaccari Virginia Image and Video Analysis Laboratory Department of Electrical Engineering University of Virginia
Activity recognition and activity boundary detection are two separate long-standing challenges in the image processing literature. In activity recognition, a predefined set of activities is classified using features. ... 详细信息
来源: 评论
Model-based learning of local image features for unsupervised texture segmentation
arXiv
收藏 引用
arXiv 2017年
作者: Kiechle, Martin Storath, Martin Weinmann, Andreas Kleinsteuber, Martin Department of Electrical and Computer Engineering Technical University of Munich Germany Image Analysis and Learning Group Universität Heidelberg Germany Department of Mathematics and Natural Sciences Darmstadt University of Applied Sciences Institute of Computational Biology Helmholtz Center Munich Germany
Features that capture well the textural patterns of a certain class of images are crucial for the performance of texture segmentation methods. The manual selection of features or designing new ones can be a tedious ta... 详细信息
来源: 评论
Author Correction: Why rankings of biomedical image analysis competitions should be interpreted with care
收藏 引用
Nature communications 2019年 第1期10卷 588页
作者: Lena Maier-Hein Matthias Eisenmann Annika Reinke Sinan Onogur Marko Stankovic Patrick Scholz Tal Arbel Hrvoje Bogunovic Andrew P Bradley Aaron Carass Carolin Feldmann Alejandro F Frangi Peter M Full Bram van Ginneken Allan Hanbury Katrin Honauer Michal Kozubek Bennett A Landman Keno März Oskar Maier Klaus Maier-Hein Bjoern H Menze Henning Müller Peter F Neher Wiro Niessen Nasir Rajpoot Gregory C Sharp Korsuk Sirinukunwattana Stefanie Speidel Christian Stock Danail Stoyanov Abdel Aziz Taha Fons van der Sommen Ching-Wei Wang Marc-André Weber Guoyan Zheng Pierre Jannin Annette Kopp-Schneider Division of Computer Assisted Medical Interventions (CAMI) German Cancer Research Center (DKFZ) 69120 Heidelberg Germany. l.maier-hein@dkfz.de. Division of Computer Assisted Medical Interventions (CAMI) German Cancer Research Center (DKFZ) 69120 Heidelberg Germany. Centre for Intelligent Machines McGill University Montreal QC H3A0G4 Canada. Christian Doppler Laboratory for Ophthalmic Image Analysis Department of Ophthalmology Medical University Vienna 1090 Vienna Austria. Science and Engineering Faculty Queensland University of Technology Brisbane QLD 4001 Australia. Department of Electrical and Computer Engineering Department of Computer Science Johns Hopkins University Baltimore MD 21218 USA. CISTIB - Center for Computational Imaging & Simulation Technologies in Biomedicine The University of Leeds Leeds Yorkshire LS2 9JT UK. Department of Radiology and Nuclear Medicine Medical Image Analysis Radboud University Center 6525 GA Nijmegen The Netherlands. Institute of Information Systems Engineering TU Wien 1040 Vienna Austria. Complexity Science Hub Vienna 1080 Vienna Austria. Heidelberg Collaboratory for Image Processing (HCI Heidelberg University 69120 Heidelberg Germany. Centre for Biomedical Image Analysis Masaryk University 60200 Brno Czech Republic. Electrical Engineering Vanderbilt University Nashville TN 37235-1679 USA. Institute of Medical Informatics Universität zu Lübeck 23562 Lübeck Germany. Division of Medical Image Computing (MIC) German Cancer Research Center (DKFZ) 69120 Heidelberg Germany. Institute for Advanced Studies Department of Informatics Technical University of Munich 80333 Munich Germany. Information System Institute HES-SO Sierre 3960 Switzerland. Departments of Radiology Nuclear Medicine and Medical Informatics Erasmus MC 3015 GD Rotterdam The Netherlands. Department of Computer Science University of Warwick Coventry CV4 7AL UK. Department of Radiation Oncology Massachusetts General Hospital Boston MA
In the original version of this Article the values in the rightmost column of Table 1 were inadvertently shifted relative to the other columns. This has now been corrected in the PDF and HTML versions of the Article.
来源: 评论
Jelly filling segmentation of fluorescence microscopy images containing incomplete labeling
Jelly filling segmentation of fluorescence microscopy images...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Neeraj J. Gadgil Paul Salama Kenneth W. Dunn Edward J. Delp Video and Image Processing Laboratory Purdue University West Lafayette Indiana Department of Electrical and Computer Engineering Indiana University-Purdue University Indianapolis Indiana Division of Nephrology Indiana University Indianapolis Indiana
Biological images acquired using fluorescence microscopy typically suffer from poor edge details, non-uniform brightness, decreasing image contrast with tissue depth and irregular/unknown structure. Hence they are con... 详细信息
来源: 评论
Nuclei segmentation of fluorescence microscopy images based on midpoint analysis and marked point process
Nuclei segmentation of fluorescence microscopy images based ...
收藏 引用
IEEE Southwest Symposium on image analysis and Interpretation
作者: Neeraj J. Gadgil Paul Salama Kenneth W. Dunn Edward J. Delp Video and Image Processing Laboratory Purdue University West Lafayette Indiana Department of Electrical and Computer Engineering Indiana University-Purdue University Indianapolis Indiana Division of Nephrology Indiana University Indianapolis Indiana
Microscope image analysis is challenging because of non-uniform brightness, decreasing image contrast with tissue depth, poor edge details and irregular and unknown structures. In this paper, we present a nuclei segme... 详细信息
来源: 评论
Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge
arXiv
收藏 引用
arXiv 2018年
作者: Bakas, Spyridon Reyes, Mauricio Jakab, Andras Bauer, Stefan Rempfler, Markus Crimi, Alessandro Shinohara, Russell Takeshi Berger, Christoph Ha, Sung Min Rozycki, Martin Prastawa, Marcel Alberts, Esther Lipkova, Jana Freymann, John Kirby, Justin Bilello, Michel Fathallah-Shaykh, Hassan M. Wiest, Roland Kirschke, Jan Wiestler, Benedikt Colen, Rivka Kotrotsou, Aikaterini Lamontagne, Pamela Marcus, Daniel Milchenko, Mikhail Nazeri, Arash Weber, Marc-Andr Mahajan, Abhishek Baid, Ujjwal Gerstner, Elizabeth Kwon, Dongjin Acharya, Gagan Agarwal, Manu Alam, Mahbubul Albiol, Alberto Albiol, Antonio Albiol, Francisco J. Alex, Varghese Allinson, Nigel Amorim, Pedro H.A. Amrutkar, Abhijit Anand, Ganesh Andermatt, Simon Arbel, Tal Arbelaez, Pablo Avery, Aaron Azmat, Muneeza Pranjal, B. Bai, Wenjia Banerjee, Subhashis Barth, Bill Batchelder, Thomas Batmanghelich, Kayhan Battistella, Enzo Beers, Andrew Belyaev, Mikhail Bendszus, Martin Benson, Eze Bernal, Jose Bharath, Halandur Nagaraja Biros, George Bisdas, Sotirios Brown, James Cabezas, Mariano Cao, Shilei Cardoso, Jorge M. Carver, Eric N. Casamitjana, Adri Castillo, Laura Silvana Cat, Marcel Cattin, Philippe Cérigues, Albert Chagas, Vinicius S. Chandra, Siddhartha Chang, Yi-Ju Chang, Shiyu Chang, Ken Chazalon, Joseph Chen, Shengcong Chen, Wei Chen, Jefferson W. Chen, Zhaolin Cheng, Kun Choudhury, Ahana Roy Chylla, Roger Clrigues, Albert Colleman, Steven Colmeiro, Ramiro German Rodriguez Combalia, Marc Costa, Anthony Cui, Xiaomeng Dai, Zhenzhen Dai, Lutao Daza, Laura Alexandra Deutsch, Eric Ding, Changxing Dong, Chao Dong, Shidu Dudzik, Wojciech Eaton-Rosen, Zach Egan, Gary Escudero, Guilherme Estienne, Tho Everson, Richard Fabrizio, Jonathan Fan, Yong Fang, Longwei Feng, Xue Ferrante, Enzo Fidon, Lucas Fischer, Martin French, Andrew P. Fridman, Naomi Fu, Huan Fuentes, David Gao, Yaozong Gates, Evan Gering, David Gholami, Amir Gierke, Willi Glocker, Ben Gong, Mingming Gonzlez-Vill, Sandra Grosges, T. Guan, Yuanfang Guo, Sheng Gupta, Sudeep Han, Woo-Sup Han, Il Song Harmuth, Ko Center for Biomedical Image Computing and Analytics University of Pennsylvania PhiladelphiaPA United States Department of Radiology Perelman School of Medicine University of Pennsylvania PhiladelphiaPA United States Department of Pathology and Laboratory Medicine Perelman School of Medicine University of Pennsylvania PhiladelphiaPA United States Institute for Surgical Technology and Biomechanics University of Bern Bern Switzerland Center for MR-Research University Children's Hospital Zurich Zurich Switzerland Support Centre for Advanced Neuroimaging Inselspital Institute for Diagnostic and Interventional Neuroradiology Bern University Hospital Bern Switzerland University Hospital of Zurich Zurich Switzerland Center for Clinical Epidemiology and Biostatistics University of Pennsylvania Philadelphia United States Image-Based Biomedical Modeling Group Technical University of Munich Munich Germany Icahn School of Medicine Mount Sinai Health System New YorkNY United States Leidos Biomedical Research Inc. Frederick National Laboratory for Cancer Research FrederickMD21701 United States Cancer Imaging Program National Cancer Institute National Institutes of Health BethesdaMD20814 United States Department of Neurology University of Alabama at Birmingham BirminghamAL United States Department of Diagnostic Radiology University of Texas MD Anderson Cancer Center HoustonTX United States Department of Psychology Washington University St. LouisMO United States Neuroimaging Informatics and Analysis Center Washington University St. LouisMO United States Department of Radiology Washington University St. LouisMO United States Institute of Diagnostic and Interventional Radiology Pediatric Radiology and Neuroradiology University Medical Center Rostock Ernst-Heydemann-Str. 6 Rostock18057 Germany Tata Memorial Centre Homi Bhabha National Institute Mumbai India Shri Guru Gobind Singhji Institute of Engineering and Technology Nanded India NVIDIA Santa Clara
Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrot... 详细信息
来源: 评论
UGraSP: A UNIFIED FRAMEWORK FOR ACTIVITY RECOGNITION AND PERSON IDENTIFICATION USING GRAPH SIGNAL PROCESSING
UGraSP: A UNIFIED FRAMEWORK FOR ACTIVITY RECOGNITION AND PER...
收藏 引用
IEEE International Conference on image Processing
作者: Tamal Batabyal Andrea Vaccari Scott T. Acton Virginia Image and Video Analysis Laboratory Department of Electrical Engineering University of Virginia
With the growing availability and wide distribution of low-cost, high-performance 3D imaging sensors, the image analysis community has witnessed an increased demand for solutions to the challenges of activity recognit... 详细信息
来源: 评论
Offline Handwritten Arabic Character Recognition Using Features Extracted from Curvelet and Spatial Domains
收藏 引用
Research Journal of Applied Sciences, engineering and Technology 2015年 第2期11卷 158-164页
作者: Mazen Abdullah Bahashwan Syed Abd Rahman Abu-Bakar Computer Vision Video and Image Processing Research Lab (CvviP) Department of Electronics and Computer Engineering Faculty of Electrical Engineering Universiti Teknologi Malaysia Johor Malaysia
Arabic character recognition is a challenging problem in several artificial intelligence applications, especially when recognizing connected cursive letters. Another dimension of complexity is that Arabic characters m... 详细信息
来源: 评论