咨询与建议

限定检索结果

文献类型

  • 321 篇 会议
  • 108 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 433 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 200 篇 工学
    • 116 篇 计算机科学与技术...
    • 103 篇 软件工程
    • 89 篇 生物医学工程(可授...
    • 78 篇 光学工程
    • 54 篇 电气工程
    • 47 篇 电子科学与技术(可...
    • 46 篇 生物工程
    • 42 篇 信息与通信工程
    • 19 篇 控制科学与工程
    • 17 篇 仪器科学与技术
    • 16 篇 机械工程
    • 7 篇 化学工程与技术
    • 5 篇 材料科学与工程(可...
    • 5 篇 安全科学与工程
    • 4 篇 土木工程
    • 3 篇 建筑学
  • 135 篇 理学
    • 63 篇 物理学
    • 57 篇 数学
    • 50 篇 生物学
    • 21 篇 统计学(可授理学、...
    • 9 篇 系统科学
    • 8 篇 化学
  • 51 篇 医学
    • 49 篇 基础医学(可授医学...
    • 47 篇 临床医学
    • 36 篇 药学(可授医学、理...
    • 8 篇 公共卫生与预防医...
  • 45 篇 管理学
    • 23 篇 图书情报与档案管...
    • 22 篇 管理科学与工程(可...
    • 5 篇 工商管理
  • 11 篇 教育学
    • 10 篇 教育学
  • 3 篇 农学
  • 3 篇 艺术学
  • 1 篇 法学

主题

  • 51 篇 image segmentati...
  • 45 篇 image analysis
  • 43 篇 laboratories
  • 34 篇 magnetic resonan...
  • 29 篇 image coding
  • 27 篇 feature extracti...
  • 27 篇 humans
  • 25 篇 biomedical imagi...
  • 22 篇 clustering algor...
  • 20 篇 computer vision
  • 20 篇 shape
  • 17 篇 image processing
  • 17 篇 video compressio...
  • 16 篇 testing
  • 16 篇 image reconstruc...
  • 15 篇 data mining
  • 14 篇 algorithm design...
  • 13 篇 pixel
  • 13 篇 neural networks
  • 13 篇 computational mo...

机构

  • 22 篇 laboratory for i...
  • 19 篇 control and inte...
  • 11 篇 video and image ...
  • 10 篇 image analysis a...
  • 9 篇 microscopic imag...
  • 9 篇 radiology image ...
  • 8 篇 image analysis l...
  • 8 篇 department of el...
  • 8 篇 computer vision ...
  • 8 篇 institute of med...
  • 8 篇 department of el...
  • 7 篇 department of qu...
  • 6 篇 image and video ...
  • 6 篇 control and inte...
  • 6 篇 heidelberg
  • 5 篇 image analysis l...
  • 5 篇 school of contro...
  • 5 篇 image analysis a...
  • 5 篇 image and video ...
  • 5 篇 control and inte...

作者

  • 30 篇 hamid soltanian-...
  • 27 篇 soltanian-zadeh ...
  • 23 篇 a.c. bovik
  • 15 篇 s. mitra
  • 14 篇 li chen
  • 14 篇 yao yudong
  • 13 篇 edward j. delp
  • 13 篇 h. soltanian-zad...
  • 10 篇 grzegorzek marci...
  • 10 篇 rahaman md mamun...
  • 10 篇 yong man ro
  • 9 篇 j. goutsias
  • 9 篇 kofler florian
  • 9 篇 e.j. delp
  • 9 篇 konstantinos n. ...
  • 8 篇 bakas spyridon
  • 8 篇 jiang tao
  • 8 篇 s.t. acton
  • 8 篇 jae young choi
  • 8 篇 paul salama

语言

  • 421 篇 英文
  • 11 篇 其他
  • 1 篇 中文
检索条件"机构=Image and Video Analysis Department of Electrical and Computer Engineering"
433 条 记 录,以下是51-60 订阅
排序:
A comprehensive review of image analysis methods for microorganism counting: From classical image processing to deep learning approaches
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, Jiawei Li, Chen Rahaman, Md Mamunur Yao, Yudong Ma, Pingli Zhang, Jinghua Zhao, Xin Jiang, Tao Grzegorzek, Marcin Microscopic Image and Medical Image Analysis Group College of Medicine and Biological Information Engineering Northeastern University Shenyang110169 China Department of Electrical and Computer Engineering Stevens Institute of Technology Hobo-kenNJ07030 United States School of Resources and Civil Engineering Northeastern University Shenyang110004 China School of Control Engineering Chengdu University of Information Technology Chengdu610225 China Institute of Medical Informatics University of Luebeck Luebeck23538 Germany
Microorganisms such as bacteria and fungi play essential roles in many application fields, like biotechnique, medical technique and industrial domain. Microorganism counting techniques are crucial in microorganism ana... 详细信息
来源: 评论
EMDS-5: Environmental Microorganism image Dataset Fifth Version for Multiple image analysis Tasks
arXiv
收藏 引用
arXiv 2021年
作者: Li, Zihan Li, Chen Yao, Yudong Zhang, Jinghua Rahaman, Md Mamunur Xu, Hao Kulwa, Frank Lu, Bolin Zhu, Xuemin Jiang, Tao Microscopic Image and Medical Image Analysis Group MBIE College Northeastern University Shenyang110169 China Department of Electrical and Computer Engineering Stevens Institute of Technology HobokenNJ07030 United States School of Biomedical Engineering Huazhong University of Science and Technology Wuhan430074 China Whiting School of Engineering Johns Hopkins University 500 W University Parkway MD21210 United States School of Control Engineering Chengdu University of Information Technology Chengdu610225 China
Environmental Microorganism Data Set Fifth Version (EMDS-5) is a microscopic image dataset including original Environmental Microorganism (EM) images and two sets of Ground Truth (GT) images. The GT image sets include... 详细信息
来源: 评论
Complex-valued Iris Recognition Network
arXiv
收藏 引用
arXiv 2020年
作者: Nguyen, Kien Fookes, Clinton Sridharan, Sridha Ross, Arun Image and Video Research Laboratory SAIVT School of Electrical Engineering and Computer Science Queensland University of Technology BrisbaneQLD4000 Australia The Department of Computer Science and Engineering Michigan State University East LansingMI48824 United States
In this work, we design a fully complex-valued neural network for the task of iris recognition. Unlike the problem of general object recognition, where real-valued neural networks can be used to extract pertinent feat... 详细信息
来源: 评论
Completely self-supervised crowd counting via distribution matching
arXiv
收藏 引用
arXiv 2020年
作者: Sam, Deepak Babu Agarwalla, Abhinav Joseph, Jimmy Sindagi, Vishwanath A. Babu, R. Venkatesh Patel, Vishal M. Video Analytics Lab Department of Computational and Data Sciences Indian Institute of Science Bangalore India Vision & Image Understanding Lab Department of Electrical and Computer Engineering Johns Hopkins University Baltimore United States
Dense crowd counting is a challenging task that demands millions of head annotations for training models. Though existing self-supervised approaches could learn good representations, they require some labeled data to ... 详细信息
来源: 评论
Gashissdb: A new gastric histopathology image dataset for computer aided diagnosis of gastric cancer
arXiv
收藏 引用
arXiv 2021年
作者: Hu, Weiming Li, Chen Li, Xiaoyan Rahaman, Md Mamunur Ma, Jiquan Zhang, Yong Chen, Haoyuan Liu, Wanli Sun, Changhao Yao, Yudong Sun, Hongzan Grzegorzek, Marcin Microscopic Image and Medical Image Analysis Group MBIE College Northeastern University Shenyang110169 China Department of Pathology Cancer Hospital China Medical University Liaoning Cancer Hospital and Institute Shenyang110042 China Department of Computer Science and Technology Heilongjiang University Heilongjiang Harbin150080 China Department of Electrical and Computer Engineering Stevens Institute of Technology HobokenNJ07030 United States Department of Radiology Shengjing Hospital China Medical University Shenyang110122 China Institute of Medical Informatics University of Luebeck Luebeck Germany
Background and Objective: Gastric cancer has turned out to be the fifth most common cancer globally, and early detection of gastric cancer is essential to save lives. Histopathological examination of gastric cancer is... 详细信息
来源: 评论
QUBIQ: Uncertainty Quantification for Biomedical image Segmentation Challenge
arXiv
收藏 引用
arXiv 2024年
作者: Li, Hongwei Bran Navarro, Fernando Ezhov, Ivan Bayat, Amirhossein Das, Dhritiman Kofler, Florian Shit, Suprosanna Waldmannstetter, Diana Paetzold, Johannes C. Hu, Xiaobin Wiestler, Benedikt Zimmer, Lucas Amiranashvili, Tamaz Prabhakar, Chinmay Berger, Christoph Weidner, Jonas Alonso-Basanta, Michelle Rashid, Arif Baid, Ujjwal Adel, Wesam Alis, Deniz Baheti, Bhakti Bai, Yingbin Bhat, Ishaan Cetindag, Sabri Can Chen, Wenting Cheng, Li Dutande, Prasad Dular, Lara Elattar, Mustafa A. Feng, Ming Gao, Shengbo Huisman, Henkjan Hu, Weifeng Innani, Shubham Ji, Wei Karimi, Davood Kuijf, Hugo J. Kwak, Jin Tae Le, Hoang Long Li, Xiang Lin, Huiyan Liu, Tongliang Ma, Jun Ma, Kai Ma, Ting Oksuz, Ilkay Holland, Robbie Oliveira, Arlindo L. Pal, Jimut Bahan Pei, Xuan Qiao, Maoying Saha, Anindo Selvan, Raghavendra Shen, Linlin Silva, Joao Lourenco Spiclin, Ziga Talbar, Sanjay Wang, Dadong Wang, Wei Wang, Xiong Wang, Yin Xi, Ruiling Xu, Kele Yang, Yanwu Yergin, Mert Yu, Shuang Zeng, Lingxi Zhang, YingLin Zhao, Jiachen Zheng, Yefeng Zukovec, Martin Do, Richard Becker, Anton Simpson, Amber Konukoglu, Ender Jakab, Andras Bakas, Spyridon Joskowicz, Leo Menze, Bjoern Department of Informatics Technical University of Munich Germany Athinoula A. Martinos Center for Biomedical Imaging Massachusetts General Hospital Harvard Medical School United States Department of Quantitative Biomedicine University of Zurich Switzerland University Children’s Hospital Zurich University of Zurich Switzerland Department of Radioncology and Radiation Theraphy Klinikum rechts der Isar Technical University of Munich Germany Department of Information Technology and Electrical Engineering ETH-Zurich Switzerland Department of Radiology Memorial Sloan Kettering Cancer Center New York City United States Department of Biomedical and Molecular Sciences Queen’s University Canada TranslaTUM - Central Institute for Translational Cancer Research Technical University of Munich Germany McGovern Institute Massachusetts Institute of Technology United States Institute for Diagnostic and Interventional Radiology Unveristy Zurich Hospital Switzerland BioMedIA Imperial College London United Kingdom Department of Radiation Oncology University of Pennsylvania PA United States University of Pennsylvania PA United States Department of Radiation Oncology Winship Cancer Institute of Emory University Georgia United States Nile University Cairo Egypt Department of Medical Sciences Acibadem University Istanbul Turkey Shri Guru Gobind Singhji Institute of Engineering and Technology Maharashtra Nanded India Trustworthy Machine Learning Lab University of Sydney Australia Image Sciences Institute University Medical Center Utrecht Netherlands Computer Engineering Department Istanbul Technical University Istanbul Turkey School of Computer Science Shenzhen University Shenzhen China University of Alberta United States University of Ljubljana Faculty of Electrical Engineering Ljubljana Slovenia Tongji University Shanghai China OPPO Research Institute Shanghai China School of Biological and Medical Engineering Beihang University Beijing China Harvard Medical School Boston
Uncertainty in medical image segmentation tasks, especially inter-rater variability, arising from differences in interpretations and annotations by various experts, presents a significant challenge in achieving consis... 详细信息
来源: 评论
Reduced myelin contributes to cognitive impairment in patients with monogenic small vessel disease
收藏 引用
Alzheimer's and Dementia 2025年 第5期21卷 e70127页
作者: Denecke, Jannis Dewenter, Anna Lee, Jongho Franzmeier, Nicolai Valentim, Carolina Kopczak, Anna Dichgans, Martin Pirpamer, Lukas Gesierich, Benno Duering, Marco Ewers, Michael Institute for Stroke and Dementia Research (ISD) LMU University Hospital Munich Germany Laboratory for Imaging Science and Technology Department of Electrical and Computer Engineering Seoul South Korea Department of Psychiatry and Neurochemistry Institute of Neuroscience and Physiology The Sahlgrenska Academy University of Gothenburg Gothenburg Sweden Munich Cluster for Systems Neurology (SyNergy) Munich Germany German Center for Neurodegenerative Disease (DZNE) Munich Germany Medical Image Analysis Center (MIAC) and Department of Biomedical Engineering University of Basel Basel Switzerland
INTRODUCTION: Myelin is pivotal for signal transfer and thus cognition. Cerebral small vessel disease (cSVD) is primarily associated with white matter (WM) lesions and diffusion changes;however, myelin alterations and... 详细信息
来源: 评论
Cover image: Volume 55 Issue 10
收藏 引用
Lasers in Surgery and Medicine 2023年 第10期55卷
作者: Arsham Hamidi PhD Yakub A. Bayhaqi PhD Sandra Drusová PhD Alexander A. Navarini MD, PhD Philippe C. Cattin PhD Ferda Canbaz PhD Azhar Zam PhD Biomedical Laser and Optics Group (BLOG) Department of Biomedical Engineering University of Basel Allschwil Switzerland Digital Dermatology Department of Biomedical Engineering University of Basel Allschwil Switzerland Department of Biomedical Engineering Center for medical Image Analysis and Navigation (CIAN) University of Basel Allschwil Switzerland Division of Engineering New York University Abu Dhabi Abu Dhabi UAE Department of Biomedical Engineering Department of Electrical and Computer Engineering Tandon School of Engineering New York University Brooklyn New York USA
来源: 评论
A comprehensive review for breast histopathology image analysis using classical and deep neural networks
arXiv
收藏 引用
arXiv 2020年
作者: Zhou, Xiaomin Li, Chen Rahaman, Md Mamunur Yao, Yudong Ai, Shiliang Sun, Changhao Li, Xiaoyan Wang, Qian Jiang, Tao Microscopic Image and Medical Image Analysis Group Northeastern University Shenyang110169 China Department of Electrical and Computer Engineering Stevens Institute of Technology HobokenNJ07030 United States Pathology Department Liaoning Hospital & Institute Shenyang110042 China Control Engineering College Chengdu University of Information Technology Chengdu610103 China
Breast cancer is one of the most common and deadliest cancers among women. Since histopathological images contain sufficient phenotypic information, they play an indispensable role in the diagnosis and treatment of br... 详细信息
来源: 评论
Is the aspect ratio of cells important in deep learning? A robust comparison of deep learning methods for multi-scale cytopathology cell image classification: From convolutional neural networks to visual transformers
arXiv
收藏 引用
arXiv 2021年
作者: Liu, Wanli Li, Chen Rahaman, Md Mamunur Jiang, Tao Sun, Hongzan Wu, Xiangchen Hu, Weiming Chen, Haoyuan Sun, Changhao Yao, Yudong Grzegorzek, Marcin Microscopic Image and Medical Image Analysis Group College of Medicine and Biological Information Engineering Northeastern University Shenyang110169 China School of Control Engineering Chengdu University of Information Technology Chengdu610225 China Shengjing Hospital China Medical University Shenyang110001 China Suzhou Ruiguan Technology Company Ltd. Suzhou215000 China Shenyang Institute of Automation Chinese Academy of Sciences Shenyang110169 China Department of Electrical and Computer Engineering Stevens Institute of Technology HobokenNJ07030 United States Institute of Medical Informatics University of Luebeck Luebeck Germany
Cervical cancer is a very common and fatal type of cancer in women. Cytopathology images are often used to screen for this cancer. Given that there is a possibility that many errors can occur during manual screening, ... 详细信息
来源: 评论