咨询与建议

限定检索结果

文献类型

  • 124 篇 会议
  • 85 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 210 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 129 篇 工学
    • 67 篇 计算机科学与技术...
    • 56 篇 软件工程
    • 26 篇 控制科学与工程
    • 25 篇 信息与通信工程
    • 18 篇 机械工程
    • 18 篇 光学工程
    • 18 篇 电气工程
    • 16 篇 生物工程
    • 15 篇 生物医学工程(可授...
    • 14 篇 电子科学与技术(可...
    • 12 篇 化学工程与技术
    • 12 篇 安全科学与工程
    • 7 篇 仪器科学与技术
    • 5 篇 船舶与海洋工程
    • 3 篇 动力工程及工程热...
  • 78 篇 理学
    • 36 篇 数学
    • 26 篇 物理学
    • 20 篇 生物学
    • 14 篇 统计学(可授理学、...
    • 10 篇 化学
    • 10 篇 系统科学
    • 3 篇 大气科学
  • 30 篇 管理学
    • 25 篇 管理科学与工程(可...
    • 9 篇 工商管理
    • 6 篇 图书情报与档案管...
  • 5 篇 医学
    • 5 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 4 篇 药学(可授医学、理...
  • 3 篇 经济学
    • 3 篇 应用经济学
  • 3 篇 教育学
    • 3 篇 教育学
  • 3 篇 农学
  • 2 篇 法学
  • 1 篇 艺术学

主题

  • 12 篇 cameras
  • 11 篇 feature extracti...
  • 10 篇 image enhancemen...
  • 9 篇 image restoratio...
  • 8 篇 mathematical mod...
  • 7 篇 image edge detec...
  • 7 篇 kalman filters
  • 7 篇 image color anal...
  • 6 篇 image processing
  • 6 篇 humans
  • 6 篇 estimation
  • 6 篇 image reconstruc...
  • 6 篇 robustness
  • 6 篇 color
  • 6 篇 intelligent syst...
  • 5 篇 laboratories
  • 5 篇 noise
  • 4 篇 noise measuremen...
  • 4 篇 filtering
  • 4 篇 image segmentati...

机构

  • 8 篇 school of artifi...
  • 7 篇 image processing...
  • 6 篇 key laboratory o...
  • 6 篇 image processing...
  • 6 篇 image processing...
  • 5 篇 image processing...
  • 5 篇 image processing...
  • 5 篇 hubei key labora...
  • 4 篇 institute of ima...
  • 4 篇 ihu strasbourg s...
  • 4 篇 institute of sys...
  • 4 篇 heidelberg
  • 3 篇 hubei key labora...
  • 3 篇 university of pe...
  • 3 篇 department of co...
  • 3 篇 vector institute...
  • 3 篇 erlangen-nürnber...
  • 3 篇 radboud institut...
  • 3 篇 department of bi...
  • 3 篇 centre for medic...

作者

  • 33 篇 joonki paik
  • 26 篇 paik joonki
  • 12 篇 hai-tao zhang
  • 11 篇 zeng zhigang
  • 11 篇 wang xiaoping
  • 8 篇 zhang hai-tao
  • 8 篇 jian huang
  • 7 篇 eunsung lee
  • 7 篇 li jiang
  • 6 篇 yifeng tang
  • 6 篇 chuanshang luo
  • 6 篇 yifan xu
  • 6 篇 huang jian
  • 6 篇 chuancong tang
  • 6 篇 zhihui huang
  • 6 篇 uwe d. hanebeck
  • 6 篇 monson h. hayes
  • 6 篇 wu dongrui
  • 6 篇 bin liu
  • 5 篇 kim sangjin

语言

  • 199 篇 英文
  • 7 篇 其他
  • 5 篇 中文
检索条件"机构=Image processing and Intelligent Systems Laboratory"
210 条 记 录,以下是71-80 订阅
排序:
Edge-Aware Graph Attention Network for Ratio of Edge-User Estimation in Mobile Networks
Edge-Aware Graph Attention Network for Ratio of Edge-User Es...
收藏 引用
International Conference on Pattern Recognition
作者: Jiehui Deng Sheng Wan Xiang Wang Enmei Tu Xiaolin Huang Jie Yang Chen Gong PCA Lab the Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China Hong Kong Polytechnic University Hong Kong SAR China
Estimating the Ratio of Edge-Users (REU) is an important issue in mobile networks, as it helps the subsequent adjustment of loads in different cells. However, existing approaches usually determine the REU manually, wh... 详细信息
来源: 评论
FCM-RDpA: TSK fuzzy regression model construction using fuzzy C-means clustering, regularization, droprule, and powerball adabelief
arXiv
收藏 引用
arXiv 2020年
作者: Shi, Zhenhua Wu, Dongrui Guo, Chenfeng Zhao, Changming Cui, Yuqi Wang, Fei-Yue Ministry of Education Key Laboratory of Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan China State Key Laboratory for Management and Control of Complex Systems Institute of Automation Chinese Academy of Sciences Beijing China
To effectively optimize Takagi-Sugeno-Kang (TSK) fuzzy systems for regression problems, a mini-batch gradient descent with regularization, DropRule, and AdaBound (MBGD-RDA) algorithm was recently proposed. This paper ... 详细信息
来源: 评论
Deep learning-based number detection and recognition for gas meter reading
收藏 引用
IEIE Transactions on Smart processing and Computing 2019年 第5期8卷 367-372页
作者: Son, Changeui Park, Seokmok Lee, JaeMin Paik, Joonki Department of Image Engineering Processing and Intelligent Systems Laboratory Graduate School of Advanced Imaging Science Multimedia and Film Chung-Ang University Seoul06974 Korea Republic of
The meter reading-system field has been researched from conventional methods centered on image processing technology to techniques based on learning methods such as machine learning or deep learning. The biggest probl... 详细信息
来源: 评论
Variational low-light image enhancement based on a haze model
收藏 引用
IEIE Transactions on Smart processing and Computing 2018年 第4期7卷 325-331页
作者: Shin, Joongchol Park, Hasil Park, Jinho Ha, Jinsol Paik, Joonki Image Processing and Intelligent Systems Laboratory Department of Image Engineering Graduate School of Advanced Imaging Science Multimedia and Film Chung-Ang University / Seoul Korea Republic of Department of Integrative Engineering Chung-Ang University Seoul Korea Republic of
Under low-illumination conditions, an acquired image is degraded by a limited dynamic range and noise in signal amplification. To solve this problem, we propose a haze model-based variational low-light image-enhanceme... 详细信息
来源: 评论
Robust kernelized correlation filter using adaptive feature weight
收藏 引用
IEIE Transactions on Smart processing and Computing 2018年 第6期7卷 433-439页
作者: Kim, Yeongbin Park, Hasil Paik, Joonki Image Processing and Intelligent Systems Laboratory Department of Image Engineering Graduate School of Advanced Imaging Science Multimedia and Film Chung-Ang University Seoul Korea Republic of Department of Integrative Engineering Chung-Ang University Seoul Korea Republic of
In this paper, we propose a robust tracking method for fast motion and background noise via improved kernelized correlation filters (KCFs). The proposed tracking algorithm consists of four steps: i) generate a Gaussia... 详细信息
来源: 评论
Multi-level graph convolutional network with automatic graph learning for hyperspectral image classification
arXiv
收藏 引用
arXiv 2020年
作者: Wan, Sheng Gong, Chen Pan, Shirui Yang, Jie Yang, Jian PCA Lab Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education Jiangsu Key Laboratory of Image Video Understanding for Social Security School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing210094 China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai200240 China Faculty of Information Technology Monash University ClaytonVIC3800 Australia
Nowadays, deep learning methods, especially the Graph Convolutional Network (GCN), have shown impressive performance in hyperspectral image (HSI) classification. However, the current GCN-based methods treat graph cons... 详细信息
来源: 评论
Deep tracking using convolutional features and adaptive frame update  8
Deep tracking using convolutional features and adaptive fram...
收藏 引用
8th IEEE International Conference on Consumer Electronics - Berlin, ICCE-Berlin 2018
作者: Kim, Yeongbin Park, Hasil Image Processing and Intelligent Systems Laboratory Graduate School of Advanced Imaging Science Multimedia and Film Chung-Ang University Seoul Korea Republic of
This paper presents a robust tracking algorithm using convolutional features. The proposed tracking algorithm consists of three steps: I) training correlation filters using features extracted by a convolutional neural... 详细信息
来源: 评论
Contrast enhancement for low-light image enhancement: A survey
收藏 引用
IEIE Transactions on Smart processing and Computing 2018年 第1期7卷 36-48页
作者: Park, Seonhee Kim, Kiyeon Yu, Soohwan Paik, Joonki Image Processing and Intelligent Systems Laboratory Graduate School of Advanced Imaging Science Multimedia and Film Chung-Ang University Seoul06974 Korea Republic of Department of Integrative Engineering Chung-Ang University Seoul06974 Korea Republic of
In this paper, various contrast and low-light image enhancement methods are described and classified into three categories: I) histogram-based, ii) transmission map-based, and iii) retinexbased. The performance of the... 详细信息
来源: 评论
BoostTree and BoostForest for Ensemble Learning
arXiv
收藏 引用
arXiv 2020年
作者: Zhao, Changming Wu, Dongrui Huang, Jian Yuan, Ye Zhang, Hai-Tao Peng, Ruimin Shi, Zhenhua Key Laboratory of the Ministry of Education for Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan China Shenzhen Huazhong University of Science and Technology Research Institute Shenzhen China The Autonomous Intelligence Unmanned Systems Engineering Research Center of Ministry of Education of China The State Key Lab of Digital Manufacturing Equipment and Technology Wuhan China
Bootstrap aggregating (Bagging) and boosting are two popular ensemble learning approaches, which combine multiple base learners to generate a composite model for more accurate and more reliable performance. They have ... 详细信息
来源: 评论
Learning data-adaptive non-parametric kernels
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2020年 第1期21卷 8590-8628页
作者: Fanghui Liu Xiaolin Huang Chen Gong Jie Yang Li Li Department of Electrical Engineering ESAT-STADIUS KU Leuven Belgium Institute of Image Processing and Pattern Recognition Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China PCA Lab Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education School of Computer Science and Engineering Nanjing University of Science and Technology China and Department of Computing Hong Kong Polytechnic University Hong Kong SAR China Department of Automation BNRist Tsinghua University China
In this paper, we propose a data-adaptive non-parametric kernel learning framework in margin based kernel methods. In model formulation, given an initial kernel matrix, a data-adaptive matrix with two constraints is i... 详细信息
来源: 评论