咨询与建议

限定检索结果

文献类型

  • 455 篇 会议
  • 375 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 831 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 527 篇 工学
    • 431 篇 计算机科学与技术...
    • 357 篇 软件工程
    • 126 篇 信息与通信工程
    • 59 篇 控制科学与工程
    • 54 篇 生物工程
    • 49 篇 电气工程
    • 32 篇 机械工程
    • 29 篇 化学工程与技术
    • 28 篇 电子科学与技术(可...
    • 24 篇 生物医学工程(可授...
    • 19 篇 动力工程及工程热...
    • 17 篇 仪器科学与技术
    • 16 篇 交通运输工程
    • 15 篇 建筑学
    • 12 篇 光学工程
    • 11 篇 材料科学与工程(可...
  • 235 篇 管理学
    • 144 篇 图书情报与档案管...
    • 119 篇 管理科学与工程(可...
    • 36 篇 工商管理
  • 217 篇 理学
    • 130 篇 数学
    • 54 篇 生物学
    • 37 篇 物理学
    • 37 篇 统计学(可授理学、...
    • 31 篇 化学
    • 15 篇 系统科学
  • 34 篇 法学
    • 29 篇 社会学
  • 22 篇 医学
    • 20 篇 临床医学
    • 16 篇 基础医学(可授医学...
    • 12 篇 药学(可授医学、理...
  • 15 篇 经济学
    • 15 篇 应用经济学
  • 6 篇 教育学
  • 5 篇 文学
  • 4 篇 农学
  • 1 篇 艺术学

主题

  • 42 篇 semantics
  • 29 篇 data mining
  • 26 篇 training
  • 22 篇 knowledge engine...
  • 18 篇 feature extracti...
  • 15 篇 conferences
  • 15 篇 big data
  • 15 篇 laboratories
  • 15 篇 computational mo...
  • 14 篇 task analysis
  • 14 篇 information retr...
  • 13 篇 xml
  • 13 篇 knowledge graph
  • 13 篇 databases
  • 13 篇 data models
  • 12 篇 wireless sensor ...
  • 12 篇 visualization
  • 11 篇 query processing
  • 11 篇 deep learning
  • 11 篇 search engines

机构

  • 153 篇 school of inform...
  • 104 篇 school of comput...
  • 44 篇 key laboratory o...
  • 42 篇 key laboratory o...
  • 32 篇 school of inform...
  • 29 篇 jiangxi key labo...
  • 29 篇 key laboratory o...
  • 27 篇 key laboratory o...
  • 24 篇 key laboratory o...
  • 19 篇 school of inform...
  • 19 篇 key laboratory o...
  • 19 篇 college of compu...
  • 18 篇 school of econom...
  • 18 篇 key laboratory o...
  • 17 篇 key laboratory o...
  • 16 篇 key laboratory o...
  • 16 篇 school of cyber ...
  • 16 篇 key laboratory o...
  • 15 篇 key laboratory o...
  • 14 篇 school of inform...

作者

  • 43 篇 chen hong
  • 33 篇 du xiaoyong
  • 28 篇 wu xindong
  • 28 篇 zhang jing
  • 26 篇 li cuiping
  • 26 篇 wang meng
  • 25 篇 xiaoyong du
  • 24 篇 wang shan
  • 23 篇 xindong wu
  • 18 篇 liu jun
  • 18 篇 huang qingming
  • 17 篇 hong chen
  • 17 篇 xu qianqian
  • 17 篇 wan changxuan
  • 16 篇 hong richang
  • 15 篇 meng wang
  • 15 篇 wang yang
  • 15 篇 chenyang bu
  • 13 篇 xuegang hu
  • 13 篇 zhao zhang

语言

  • 773 篇 英文
  • 38 篇 其他
  • 20 篇 中文
检索条件"机构=In formation School and Key Laboratory of Data Engineering and Knowledge Engineering"
831 条 记 录,以下是741-750 订阅
排序:
CLDG: Contrastive Learning on Dynamic Graphs
CLDG: Contrastive Learning on Dynamic Graphs
收藏 引用
International Conference on data engineering
作者: Yiming Xu Bin Shi Teng Ma Bo Dong Haoyi Zhou Qinghua Zheng Department of Computer Science and Technology Xi’an Jiaotong University China Shaanxi Provincial Key Laboratory of Big Data Knowledge Engineering Xi’an Jiaotong University China Department of Distance Education Xi’an Jiaotong University China School of Software Beihang University China Advanced Innovation Center for Big Data and Brain Computing Beihang University China
The graph with complex annotations is the most potent data type, whose constantly evolving motivates further exploration of the unsupervised dynamic graph representation. One of the representative paradigms is graph c...
来源: 评论
CLDG: Contrastive Learning on Dynamic Graphs
arXiv
收藏 引用
arXiv 2024年
作者: Xu, Yiming Shi, Bin Ma, Teng Dong, Bo Zhou, Haoyi Zheng, Qinghua Department of Computer Science and Technology Xi’an Jiaotong University China Shaanxi Provincial Key Laboratory of Big Data Knowledge Engineering Xi’an Jiaotong University China Department of Distance Education Xi’an Jiaotong University China School of Software Beihang University China Advanced Innovation Center for Big Data and Brain Computing Beihang University China
The graph with complex annotations is the most potent data type, whose constantly evolving motivates further exploration of the unsupervised dynamic graph representation. One of the representative paradigms is graph c... 详细信息
来源: 评论
iSplit LBI: Individualized partial ranking with ties via split LBI
arXiv
收藏 引用
arXiv 2019年
作者: Xu, Qianqian Sun, Xinwei Yang, Zhiyong Cao, Xiaochun Huang, Qingming Yao, Yuan Key Lab. of Intelligent Information Processing Institute of Computing Technology CAS Microsoft Research Asia State Key Laboratory of Information Security Institute of Information Engineering CAS School of Cyber Security University of Chinese Academy of Sciences School of Computer Science and Tech. University of Chinese Academy of Sciences Key Laboratory of Big Data Mining and Knowledge Management CAS Peng Cheng Laboratory Department of Mathematics Hong Kong University of Science and Technology Hong Kong
Due to the inherent uncertainty of data, the problem of predicting partial ranking from pairwise comparison data with ties has attracted increasing interest in recent years. However, in real-world scenarios, different... 详细信息
来源: 评论
New entanglement-assisted quantum codes from negacyclic codes
arXiv
收藏 引用
arXiv 2023年
作者: Chen, Xiaojing Lu, Xingbo Zhu, Shixin Jiang, Wan Wang, Xindi School of Internet Anhui University Anhui Hefei230039 China School of Mathematics Hefei University of Technology Anhui Hefei230601 China Key Laboratory of Knowledge Engineering with Big Data Ministry of Education Hefei University of Technology Anhui Hefei230601 China School of Computer and Information Hefei University of Technology Anhui Hefei230601 China
The theory of entanglement-assisted quantum error-correcting codes (EAQECCs) is a generalization of the standard stabilizer quantum error-correcting codes, which can be possibly constructed from any classical codes by... 详细信息
来源: 评论
Median query research in wireless sensor networks
收藏 引用
Tien Tzu Hsueh Pao/Acta Electronica Sinica 2010年 第2A期38卷 133-137页
作者: Wu, Zhong-Bo Zhang, Hui Chen, Hong Information School Renmin University of China Beijing 100872 China Key Laboratory of Data Engineering and Knowledge Engineering Ministry of Education Beijing 100872 China School of Mathematics and Computer Science Xiangfan University Xiangfan Hubei 441053 China
Poor quality and harsh condition can result in faulty and outlier data in sampling data of sensor nodes. So we need median query to reflect average level of monitoring region. First, we put forward HMA algorithm. Seco... 详细信息
来源: 评论
Discriminative Additive Scale Loss for Deep Imbalanced Classification and Embedding
Discriminative Additive Scale Loss for Deep Imbalanced Class...
收藏 引用
IEEE International Conference on data Mining (ICDM)
作者: Zhao Zhang Weiming Jiang Yang Wang Qiaolin Ye Mingbo Zhao Mingliang Xu Meng Wang School of Computer Science and Information Engineering Hefei University of Technology Hefei China Key Laboratory of Knowledge Engineering with Big Data (Ministry of Education) & Intelligent Interconnected Systems Laboratory of Anhui Province Hefei University of Technology Hefei China AI team Shanghai Shizhuang Information Technology Co. Ltd Shanghai China College of Information Science and Technology Nanjing Forestry University Nanjing China School of Information Science and Technology Donghua University Shanghai China School of Information Engineering Zhengzhou University Zhengzhou China
Real-world data in emerging applications may suffer from highly-skewed class imbalanced distribution, however how to deal with this kind of problem appropriately through deep learning needs further investigation. In t... 详细信息
来源: 评论
JC5A: Service Delay Minimization for Aerial MEC-assisted Industrial Cyber-Physical Systems
arXiv
收藏 引用
arXiv 2024年
作者: Sun, Geng Wu, Jiaxu Sun, Zemin He, Long Wang, Jiacheng Niyato, Dusit Jamalipour, Abbas Mao, Shiwen College of Computer Science and Technology Jilin University Changchun130012 China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun130012 China College of Computing and Data Science Nanyang Technological University Singapore639798 Singapore School of Computer Science and Engineering Nanyang Technological University Singapore639798 Singapore School of Electrical and Computer Engineering The University of Sydney SydneyNSW2006 Australia Department of Electrical and Computer Engineering Auburn University Auburn United States
In the era of the sixth generation (6G) and industrial Internet of Things (IIoT), an industrial cyber-physical system (ICPS) drives the proliferation of sensor devices and computing-intensive tasks. To address the lim... 详细信息
来源: 评论
Prompt Tuning Pushes Farther, Contrastive Learning Pulls Closer: A Two-Stage Approach to Mitigate Social Biases
arXiv
收藏 引用
arXiv 2023年
作者: Li, Yingji Du, Mengnan Wang, Xin Wang, Ying College of Computer Science and Technology Jilin University Changchun China Department of Data Science New Jersey Institute of Technology Newark United States School of Artificial Intelligence Jilin University Changchun China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun China
As the representation capability of Pre-trained Language Models (PLMs) improve, there is growing concern that they will inherit social biases from unprocessed corpora. Most previous debiasing techniques used Counterfa... 详细信息
来源: 评论
An Empirical Study on Information Extraction using Large Language Models
arXiv
收藏 引用
arXiv 2023年
作者: Han, Ridong Yang, Chaohao Peng, Tao Tiwari, Prayag Wan, Xiang Liu, Lu Wang, Benyou College of Computer Science and Technology Jilin University China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University China College of Software Jilin University China Shenzhen Research Institute of Big Data The Chinese University of Hong Kong Shenzhen China School of Data Science The Chinese University of Hong Kong Shenzhen China School of Information Technology Halmstad University Sweden
Human-like large language models (LLMs), especially the most powerful and popular ones in OpenAI’s GPT family, have proven to be very helpful for many natural language processing (NLP) related tasks. Therefore, vario... 详细信息
来源: 评论
Adaptive structure-constrained robust latent low-rank coding for image recovery
arXiv
收藏 引用
arXiv 2019年
作者: Zhang, Zhao Wang, Lei Li, Sheng Wang, Yang Zhang, Zheng Zha, Zhengjun Wang, Meng School of Computer Science and Technology Soochow University Suzhou215006 China Key Laboratory of Knowledge Engineering with Big Data Ministry of Education Hefei University of Technology School of Computer Science and Information Engineering Hefei University of Technology Hefei China Department of Computer Science University of Georgia 549 Boyd GSRC AthensGA30602 Shenzhen China School of Information Science and Technology University of Science and Technology of China Hefei China
In this paper, we propose a robust representation learning model called Adaptive Structure-constrained Low-Rank Coding (AS-LRC) for the latent representation of data. To recover the underlying subspaces more accuratel... 详细信息
来源: 评论