Mobile devices within Fifth Generation(5G)networks,typically equipped with Android systems,serve as a bridge to connect digital gadgets such as global positioning system,mobile devices,and wireless routers,which are v...
详细信息
Mobile devices within Fifth Generation(5G)networks,typically equipped with Android systems,serve as a bridge to connect digital gadgets such as global positioning system,mobile devices,and wireless routers,which are vital in facilitating end-user communication ***,the security of Android systems has been challenged by the sensitive data involved,leading to vulnerabilities in mobile devices used in 5G *** vulnerabilities expose mobile devices to cyber-attacks,primarily resulting from security ***-permission apps in Android can exploit these channels to access sensitive information,including user identities,login credentials,and geolocation *** such attack leverages"zero-permission"sensors like accelerometers and gyroscopes,enabling attackers to gather information about the smartphone's *** underscores the importance of fortifying mobile devices against potential future *** research focuses on a new recurrent neural network prediction model,which has proved highly effective for detecting side-channel attacks in mobile devices in 5G *** conducted state-of-the-art comparative studies to validate our experimental *** results demonstrate that even a small amount of training data can accurately recognize 37.5%of previously unseen user-typed ***,our tap detection mechanism achieves a 92%accuracy rate,a crucial factor for text *** findings have significant practical implications,as they reinforce mobile device security in 5G networks,enhancing user privacy,and data protection.
In the charity sector, fundraising and transparency have long been key issues. Charity NFT (Non-Fungible Token) auctions, an emerging charity fundraising model integrating blockchain and NFT concepts, bring opportunit...
详细信息
This article introduces a novel algorithm, named 'CrowdDC,' that aims to solve the issue of ranking large datasets based on subjective factors using crowdsourced paired comparisons. In traditional paired compa...
详细信息
To enhance the capability of classifying and localizing defects on the surface of hot-rolled strips, this paper proposed an algorithm based on YOLOv7 to improve defect detection. The BI-SPPFCSPC structure was incorpor...
详细信息
Breast cancer poses a threat to women’s health and contributes to an increase in mortality rates. Mammography has proven to be an effective tool for the early detection of breast cancer. However, it faces many challe...
详细信息
Breast cancer poses a threat to women’s health and contributes to an increase in mortality rates. Mammography has proven to be an effective tool for the early detection of breast cancer. However, it faces many challenges in early breast cancer detection due to poor image quality, traditional segmentation, and feature extraction. Therefore, this work addresses these issues and proposes an attention-based backpropagation convolutional neural network (ABB-CNN) to detect breast cancer from mammogram images more accurately. The proposed work includes image enhancement, reinforcement learning-based semantic segmentation (RLSS), and multiview feature extraction and classification. The image enhancement is performed by removing noise and artefacts through a hybrid filter (HF), image scaling through a pixel-based bilinear interpolation (PBI), and contrast enhancement through an election-based optimization (EO) algorithm. In addition, the RLSS introduces intelligent segmentation by utilizing a deep Q network (DQN) to segment the region of interest (ROI) strategically. Moreover, the proposed ABB-CNN facilitates multiview feature extraction from the segmented region to classify the mammograms into normal, malignant, and benign classes. The proposed framework is evaluated on the collected and the digital database for screening mammography (DDSM) datasets. The proposed framework provides better outcomes in terms of accuracy, sensitivity, specificity, precision, f-measure, false-negative rate (FNR) and area under the curve (AUC). This work achieved (99.20%, 99.35%), (99.56%, 99.66%), (98.96%, 98.99%), (99.05%, 99.12%), (0.44%, 0.34%), (99.31%, 99.39%) and (99.27%, 99.32%) of accuracy, sensitivity, specificity, precision, FNR, f-measure and AUC on (collected, DDSM datasets), respectively. This research addresses the prevalent challenges in breast cancer identification and offers a robust and highly accurate solution by integrating advanced deep-learning techniques. The evaluated re
Research on mass gathering events is critical for ensuring public security and maintaining social ***,most of the existing works focus on crowd behavior analysis areas such as anomaly detection and crowd counting,and ...
详细信息
Research on mass gathering events is critical for ensuring public security and maintaining social ***,most of the existing works focus on crowd behavior analysis areas such as anomaly detection and crowd counting,and there is a relative lack of research on mass gathering *** believe real-time detection and monitoring of mass gathering behaviors are essential formigrating potential security risks and ***,it is imperative to develop a method capable of accurately identifying and localizing mass gatherings before disasters occur,enabling prompt and effective *** address this problem,we propose an innovative Event-Driven Attention Network(EDAN),which achieves image-text matching in the scenario of mass gathering events with good results for the first *** image-text retrieval methods based on global alignment are difficult to capture the local details within complex scenes,limiting retrieval *** local alignment-based methods aremore effective at extracting detailed features,they frequently process raw textual features directly,which often contain ambiguities and redundant information that can diminish retrieval efficiency and degrade model *** overcome these challenges,EDAN introduces an Event-Driven AttentionModule that adaptively focuses attention on image regions or textual words relevant to the event *** calculating the semantic distance between event labels and textual content,this module effectively significantly reduces computational complexity and enhances retrieval *** validate the effectiveness of EDAN,we construct a dedicated multimodal dataset tailored for the analysis of mass gathering events,providing a reliable foundation for subsequent *** conduct comparative experiments with other methods on our dataset,the experimental results demonstrate the effectiveness of *** the image-to-text retrieval task,EDAN achieved the best performance on the R@5 metric,w
The medical domain faces unique challenges in information Retrieval (IR) due to the complexity of medical language and terminology discrepancies between user queries and documents. While traditional Keyword-Based Meth...
详细信息
As many countries face the challenges of an aging population and declining birth rates, the demand for labor, particularly for assisting the elderly, is increasing. Traditional robots, being standardized products, req...
详细信息
One of themost prominent research areas in information technology is the Internet of Things (IoT) as its applications are widely used, such as structural monitoring, health care management systems, agriculture and bat...
详细信息
One of themost prominent research areas in information technology is the Internet of Things (IoT) as its applications are widely used, such as structural monitoring, health care management systems, agriculture and battlefield management, and so on. Due to its self-organizing network and simple installation of the network, the researchers have been attracted to pursue research in the various fields of IoTs. However, a huge amount of work has been addressed on various problems confronted by IoT. The nodes densely deploy over critical environments and those are operated on tiny batteries. Moreover, the replacement of dead batteries in the nodes is almost impractical. Therefore, the problem of energy preservation and maximization of IoT networks has become the most prominent research area. However, numerous state-of-The-Art algorithms have addressed this issue. Thus, it has become necessary to gather the information and send it to the base station in an optimized method to maximize the network. Therefore, in this article, we propose a novel quantum-informed ant colony optimization (ACO) routing algorithm with the efficient encoding scheme of cluster head selection and derivation of information heuristic factors. The algorithm has been tested by simulation for various network scenarios. The simulation results of the proposed algorithm show its efficacy over a few existing evolutionary algorithms using various performance metrics, such as residual energy of the network, network lifetime, and the number of live IoT nodes. Impact Statement-Toward IoT-based applications, here we presented the Quantum-inspired ACO clustering algorithm for network lifetime. IoT nodes in the clustering phase choose theirCH through the distance between cluster member IoT nodes and the residual energy. Thus, CH selection reduces the energy consumption of member IoT nodes. Therefore, our significant contributions are summarized as follows. i. Developing Quantum-informed ACO clustered routing algor
Animation is a widespread artistic expression that holds a special place in people's hearts. Traditionally, animation creation has relied heavily on manual techniques, demanding skilled drawing abilities and a sig...
详细信息
暂无评论