If adversaries were to obtain quantum computers in the future, their massive computing power would likely break existing security schemes. Since security is a continuous process, more substantial security schemes must...
详细信息
Forest fires pose a serious threat to ecological balance, air quality, and the safety of both humans and wildlife. This paper presents an improved model based on You Only Look Once version 5 (YOLOv5), named YOLO Light...
详细信息
Forest fires pose a serious threat to ecological balance, air quality, and the safety of both humans and wildlife. This paper presents an improved model based on You Only Look Once version 5 (YOLOv5), named YOLO Lightweight Fire Detector (YOLO-LFD), to address the limitations of traditional sensor-based fire detection methods in terms of real-time performance and accuracy. The proposed model is designed to enhance inference speed while maintaining high detection accuracy on resource-constrained devices such as drones and embedded systems. Firstly, we introduce Depthwise Separable Convolutions (DSConv) to reduce the complexity of the feature extraction network. Secondly, we design and implement the Lightweight Faster Implementation of Cross Stage Partial (CSP) Bottleneck with 2 Convolutions (C2f-Light) and the CSP Structure with 3 Compact Inverted Blocks (C3CIB) modules to replace the traditional C3 modules. This optimization enhances deep feature extraction and semantic information processing, thereby significantly increasing inference speed. To enhance the detection capability for small fires, the model employs a Normalized Wasserstein Distance (NWD) loss function, which effectively reduces the missed detection rate and improves the accuracy of detecting small fire sources. Experimental results demonstrate that compared to the baseline YOLOv5s model, the YOLO-LFD model not only increases inference speed by 19.3% but also significantly improves the detection accuracy for small fire targets, with only a 1.6% reduction in overall mean average precision (mAP)@0.5. Through these innovative improvements to YOLOv5s, the YOLO-LFD model achieves a balance between speed and accuracy, making it particularly suitable for real-time detection tasks on mobile and embedded devices.
In recent years, social networks have grown rapidly, and their applications in the healthcare domain are increasingly proposed. Using the crowd wisdom generated from social networks, we can find similar and reliable p...
详细信息
Screws play a critical role as essential components across various industries. To meet market demands and standards, screw manufacturers are embracing digital transformation and leveraging artificial intelligence (AI)...
详细信息
With the growth of the World Wide Web, a large amount of music data is available on the Internet. A large number of people listen to music online rather than downloading and listening offline. But only some sites prov...
详细信息
Skin cancer is one of the most prevalent forms of human cancer. It is recognized mainly visually, beginning with clinical screening and continuing with the dermoscopic examination, histological assessment, and specime...
详细信息
Federated learning (FL) is widely used in various fields because it can guarantee the privacy of the original data source. However, in data-sensitive fields such as Internet of Vehicles (IoV), insecure communication c...
详细信息
Federated learning (FL) is widely used in various fields because it can guarantee the privacy of the original data source. However, in data-sensitive fields such as Internet of Vehicles (IoV), insecure communication channels, semi-trusted RoadSide Unit (RSU), and collusion between vehicles and the RSU may lead to leakage of model parameters. Moreover, when aggregating data, since different vehicles usually have different computing resources, vehicles with relatively insufficient computing resources will affect the data aggregation efficiency. Therefore, in order to solve the privacy leakage problem and improve the data aggregation efficiency, this paper proposes a privacy-preserving data aggregation protocol for IoV with FL. Firstly, the protocol is designed based on methods such as shamir secret sharing scheme, pallier homomorphic encryption scheme and blinding factor protection, which can guarantee the privacy of model parameters. Secondly, the protocol improves the data aggregation efficiency by setting dynamic training time windows. Thirdly, the protocol reduces the frequent participations of Trusted Authority (TA) by optimizing the fault-tolerance mechanism. Finally, the security analysis proves that the proposed protocol is secure, and the performance analysis results also show that the proposed protocol has high computation and communication efficiency. IEEE
Repetition is the most prominent type of dysfluency in stuttered speech. Spectral energy, entropy, ZCR, and centroid are extracted using wavelet packet transformation, and similarity between these features for adjacen...
详细信息
Lung cancer is the most lethal form of cancer. This paper introduces a novel framework to discern and classify pulmonary disorders such as pneumonia, tuberculosis, and lung cancer by analyzing conventional X-ray and C...
详细信息
Solar flares are one of the strongest outbursts of solar activity,posing a serious threat to Earth’s critical infrastructure,such as communications,navigation,power,and ***,it is essential to accurately predict solar...
详细信息
Solar flares are one of the strongest outbursts of solar activity,posing a serious threat to Earth’s critical infrastructure,such as communications,navigation,power,and ***,it is essential to accurately predict solar flares in order to ensure the safety of human ***,the research focuses on two directions:first,identifying predictors with more physical information and higher prediction accuracy,and second,building flare prediction models that can effectively handle complex observational *** terms of flare observability and predictability,this paper analyses multiple dimensions of solar flare observability and evaluates the potential of observational parameters in *** flare prediction models,the paper focuses on data-driven models and physical models,with an emphasis on the advantages of deep learning techniques in dealing with complex and high-dimensional *** reviewing existing traditional machine learning,deep learning,and fusion methods,the key roles of these techniques in improving prediction accuracy and efficiency are *** prevailing challenges,this study discusses the main challenges currently faced in solar flare prediction,such as the complexity of flare samples,the multimodality of observational data,and the interpretability of *** conclusion summarizes these findings and proposes future research directions and potential technology advancement.
暂无评论