咨询与建议

限定检索结果

文献类型

  • 79 篇 会议
  • 50 篇 期刊文献

馆藏范围

  • 129 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 90 篇 工学
    • 70 篇 计算机科学与技术...
    • 67 篇 软件工程
    • 20 篇 信息与通信工程
    • 15 篇 控制科学与工程
    • 11 篇 生物工程
    • 9 篇 生物医学工程(可授...
    • 5 篇 电气工程
    • 4 篇 机械工程
    • 4 篇 光学工程
    • 4 篇 交通运输工程
    • 3 篇 仪器科学与技术
    • 3 篇 电子科学与技术(可...
    • 2 篇 农业工程
  • 51 篇 理学
    • 38 篇 数学
    • 16 篇 统计学(可授理学、...
    • 15 篇 生物学
    • 4 篇 物理学
    • 4 篇 系统科学
    • 2 篇 地质学
  • 29 篇 管理学
    • 19 篇 图书情报与档案管...
    • 11 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 8 篇 医学
    • 8 篇 临床医学
    • 7 篇 基础医学(可授医学...
    • 6 篇 药学(可授医学、理...
  • 7 篇 教育学
    • 4 篇 教育学
    • 2 篇 心理学(可授教育学...
  • 5 篇 法学
    • 5 篇 社会学
  • 3 篇 经济学
    • 3 篇 应用经济学
  • 2 篇 农学
    • 2 篇 作物学
  • 1 篇 哲学
  • 1 篇 文学
  • 1 篇 历史学
  • 1 篇 艺术学

主题

  • 8 篇 machine learning
  • 8 篇 forecasting
  • 7 篇 recommender syst...
  • 6 篇 predictive model...
  • 6 篇 time series
  • 6 篇 data models
  • 4 篇 deep neural netw...
  • 4 篇 neural networks
  • 4 篇 optimization
  • 4 篇 time series anal...
  • 4 篇 students
  • 4 篇 machine learning...
  • 4 篇 flying ad hoc ne...
  • 3 篇 object detection
  • 3 篇 computational mo...
  • 3 篇 feature extracti...
  • 3 篇 uncertainty
  • 3 篇 prediction algor...
  • 3 篇 artificial intel...
  • 3 篇 training

机构

  • 23 篇 information syst...
  • 16 篇 information syst...
  • 5 篇 information syst...
  • 4 篇 pattern recognit...
  • 4 篇 information syst...
  • 4 篇 future technolog...
  • 3 篇 school of comput...
  • 3 篇 information syst...
  • 3 篇 department of in...
  • 3 篇 institute of res...
  • 3 篇 australian insti...
  • 3 篇 university of hi...
  • 3 篇 school of medici...
  • 2 篇 department of co...
  • 2 篇 university of hi...
  • 2 篇 machine learning...
  • 2 篇 information syst...
  • 2 篇 department of co...
  • 2 篇 arba minch unive...
  • 2 篇 engineering scho...

作者

  • 62 篇 schmidt-thieme l...
  • 22 篇 lars schmidt-thi...
  • 14 篇 grabocka josif
  • 9 篇 drumond lucas
  • 9 篇 nanopoulos alexa...
  • 7 篇 wistuba martin
  • 6 篇 krohn-grimberghe...
  • 6 篇 martin wistuba
  • 5 篇 elsayed shereen
  • 5 篇 rashed ahmed
  • 4 篇 yousefpoor moham...
  • 4 篇 buza krisztian
  • 4 篇 jawed shayan
  • 4 篇 schilling nicola...
  • 4 篇 gantner zeno
  • 4 篇 lee sang-woong
  • 4 篇 thai-nghe nguyen
  • 4 篇 rahmani amir mas...
  • 4 篇 madhusudhanan ki...
  • 4 篇 hosseinzadeh meh...

语言

  • 126 篇 英文
  • 2 篇 其他
  • 1 篇 中文
检索条件"机构=Information Systems and Machine Learning Lab"
129 条 记 录,以下是41-50 订阅
排序:
A machine learning approach to infer on-street parking occupancy based on parking meter transactions
A machine learning approach to infer on-street parking occup...
收藏 引用
International Conference on Intelligent Transportation
作者: Jonas Sonntag Lars Schmidt-Thieme Information Systems and Machine Learning Lab University of Hildesheim Hildesheim Germany
Cruising for parking is not only stressful task for most drivers but also increases congestion and emissions. Therefore smart parking guidance systems are gaining increasing interest from researchers and city councils... 详细信息
来源: 评论
Computational Approach for Respiratory Pressure Parameters in Neonatal Ventilation
Computational Approach for Respiratory Pressure Parameters i...
收藏 引用
Annual Siberian Russian Workshop on Electron Devices and Materials (EDM)
作者: Daria Lipchak Aleksey Chupov Anton Dolganov Aleksei Zhdanov Medical Devices R&D Bureau Joint Stock Company “Production Association “Urals Optical & Mechanical Plant” named after Mr. E. S. Yalamov” Yekaterinburg Russia Engineering School of Information Technologies Telecommunications and Control Systems Ural Federal University named after the first President of Russia B.N. Yeltsin Yekaterinburg Russia Machine Learning and Data Analytics Lab University of Erlangen-Nuremberg Erlangen Germany
In the context of mechanical ventilation, the accurate calculation of secondary pressure parameters is essential for clinicians to effectively assess a patient's clinical condition. In the case of neonatal resusci...
来源: 评论
HIDRA: Head initialization across dynamic targets for robust architectures
arXiv
收藏 引用
arXiv 2019年
作者: Drumond, Rafael Rego Brinkmeyer, Lukas Schmidt-Thieme, Lars Grabocka, Josif University of Hildesheim Information Systems and Machine Learning Lab
The performance of gradient-based optimization strategies depends heavily on the initial weights of the parametric model. Recent works show that there exist weight initializations from which optimization procedures ca... 详细信息
来源: 评论
In hindsight: A smooth reward for steady exploration
arXiv
收藏 引用
arXiv 2019年
作者: Jomaa, Hadi Samer Grabocka, Josif Schmidt-Thieme, Lars Information Systems and Machine Learning Lab University of Hildesheim Germany
In classical Q-learning, the objective is to maximize the sum of discounted rewards through iteratively using the Bellman equation as an update, in an attempt to estimate the action value function of the optimal polic... 详细信息
来源: 评论
Multi-step Forecasting via Multi-task learning
Multi-step Forecasting via Multi-task Learning
收藏 引用
IEEE International Conference on Big Data
作者: Shayan Jawed Ahmed Rashed Lars Schmidt-Thieme Information Systems and Machine Learning Lab University of Hildesheim Hildesheim Germany
Multi-task learning is an established approach for improving the generalization of a model. We explore multi-task learning in the context of time series forecasting. Specifically, we look into a multivariate setting w... 详细信息
来源: 评论
Multi-label network classification viaweighted personalized factorizations
arXiv
收藏 引用
arXiv 2019年
作者: Rashed, Ahmed Grabocka, Josif Schmidt-Thieme, Lars Information Systems and Machine Learning Lab University of Hildesheim Hildesheim Germany
Multi-label network classification is a well-known task that is being used in a wide variety of web-based and non-web-based domains. It can be formalized as a multi-relational learning task for predicting nodes labels... 详细信息
来源: 评论
A smart filtering-based adaptive optimized link state routing protocol in flying ad hoc networks for traffic monitoring
收藏 引用
Journal of King Saud University - Computer and information Sciences 2024年 第4期36卷
作者: Hosseinzadeh, Mehdi Ali, Saqib Rahmani, Amir Masoud Lansky, Jan Nulicek, Vladimir Yousefpoor, Mohammad Sadegh Yousefpoor, Efat Darwesh, Aso Lee, Sang-Woong Institute of Research and Development Duy Tan University Da Nang Viet Nam School of Medicine and Pharmacy Duy Tan University Da Nang Viet Nam Department of Information Systems College of Economics and Political Science Sultan Qaboos University Al Khoudh Muscat Oman Future Technology Research Center National Yunlin University of Science and Technology Yunlin Taiwan Department of Computer Science and Mathematics Faculty of Economic Studies University of Finance and Administration Prague Czech Republic Center of Research and Strategic Studies Lebanese French University Kurdistan Region Iraq Department of Information Technology University of Human Development Sulaymaniyah Kurdistan region Iraq Pattern Recognition and Machine Learning Lab Gachon University 1342 Seongnamdaero Sujeonggu Seongnam 13120 South Korea
Nowadays, the use of drones as a fundamental element of smart cities has attracted the attention of many researchers to monitor and control the traffic of vehicles. Because of the high flexibility of multi-drone syste... 详细信息
来源: 评论
Data-Driven Vehicle Trajectory Forecasting
arXiv
收藏 引用
arXiv 2019年
作者: Jawed, Shayan Boumaiza, Eya Grabocka, Josif Schmidt-Thieme, Lars Information Systems and Machine Learning Lab University of Hildesheim Samelsonplatz 22 Hildesheim31141
An active area of research is to increase the safety of self-driving vehicles. Although safety cannot be guarenteed completely, the capability of a vehicle to predict the future trajectories of its surrounding vehicle... 详细信息
来源: 评论
Dataset2Vec: learning dataset meta-features
arXiv
收藏 引用
arXiv 2019年
作者: Jomaa, Hadi S. Grabocka, Josif Schmidt-Thieme, Lars Information Systems and Machine Learning Lab University of Hildesheim Samelsonplatz 1 Hildesheim31141 Germany
machine learning tasks such as optimizing the hyper-parameters of a model for a new dataset or few-shot learning can be vastly accelerated if they are not done from scratch for every new dataset, but carry over findin... 详细信息
来源: 评论
Chameleon: learning model initializations across tasks with different schemas
arXiv
收藏 引用
arXiv 2019年
作者: Brinkmeyer, Lukas Drumond, Rafael Rego Scholz, Randolf Grabocka, Josif Schmidt-Thieme, Lars Information Systems Machine-Learning Lab University of Hildesheim Samelsonplatz 1 Hildesheim31141 Germany
Parametric models, and particularly neural networks, require weight initialization as a starting point for gradient-based optimization. In most current practices, this is accomplished by using some form of random init... 详细信息
来源: 评论